Advertisement
Research Article| Volume 9, ISSUE 3, P259-273, 1988

Molecular mechanisms of the red cell storage lesion

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Preserved erythrocytes undergo several changes during storage, collectively referred to as the storage lesion, which reduce the effectiveness of stored erythrocytes following transfusion. This review describes the mechanisms leading to these changes, so far as they are known, and discusses the relationship of the changes to one another and how they contribute to the diminished function of stored erythrocytes.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weed RI
        The importance of erythrocyte deformability.
        Am J Med. 1970; 49: 147-150
        • Hochmuth RM
        • Waugh RE
        Erythrocyte membrane elasticity and viscosity.
        Ann Rev Physiol. 1987; 49: 209-219
        • Chien S
        Red cell deformability and its relevance to blood flow.
        Ann Rev Physiol. 1987; 49: 177-192
        • Op den Kamp JAF
        Lipid asymmetry in membranes.
        Ann Rev Biochem. 1979; 48: 47-71
        • Schroit AJ
        • Madsen JW
        • Tanaka Y
        In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes.
        J Biol Chem. 1985; 260: 5131-5138
        • Bennett V
        The membrane skeleton of human erythrocytes and its implications for more complex cells.
        Ann Rev Biochem. 1985; 54: 273-304
        • Marchesi VT
        Stabilizing infrastructure of cell membranes.
        Ann Rev Cell Biol. 1985; 1: 531-561
        • Chassis JA
        • Shohet SB
        Red cell biochemical anatomy and membrane properties.
        Ann Rev Physiol. 1987; 49: 237-248
        • Yu J
        • Fischman DA
        • Steck TL
        Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents.
        J Supramol Struct. 1973; 1: 233-248
        • Steck TL
        The organization of proteins in the human red blood cell membrane.
        J Cell Biol. 1974; 62: 1-19
        • Sheetz MP
        Integral membrane protein interaction with triton cytoskeletons of erythrocytes.
        Biochim Biophys Acta. 1979; 557: 122-134
        • Mombers C
        • van Dijck PWM
        • van Deenen LLM
        • de Gier J
        • Verkleij AJ
        The intreraction of spectrin-actin and synthetic phospholipids.
        Biochim Biophys Acta. 1977; 470: 152-160
        • Mombers C
        • de Gier J
        • Demel RA
        • van Deenen LLM
        Spectrin-phospholipid interaction. A monolayer study.
        Biochim Biophys Acta. 1980; 603: 52-62
        • Sato SB
        • Ohnishi S
        Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles.
        Eur J Biochem. 1983; 130: 19-25
        • Anderson RA
        • Marchesi VT
        Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide.
        Nature (London). 1985; 318: 295-298
        • Pasterack GR
        • Anderson RA
        • Leto TL
        • Marchesi VT
        Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton.
        J Biol Chem. 1985; 260: 3676-3683
        • Siegel DL
        • Branton D
        Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes.
        J Cell Biol. 1985; 100: 775-785
        • Gardner K
        • Bennett V
        Modulation of spectrin-actin assembly by erythrocyte adducin.
        Nature (London). 1987; 328: 359-362
        • Mische SM
        • Mooseker MS
        • Morrow JS
        Erythrocyte adducin: A calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding.
        J Cell Biol. 1987; 105: 2837-2845
        • Byers TJ
        • Branton D
        Visualization of the protein associations in the erythrocyte membrane skeleton.
        in: Proc Natl Acad Sci USA. 82. 1985: 6153-6157
        • Shen BW
        • Josephs R
        • Steck TL
        Ultrastructure of the intact skeleton of the human erythrocyte membrane.
        J Cell Biol. 1986; 102: 997-1006
        • Liu S-C
        • Derick LH
        • Palek J
        Visualization of the hexagonal lattice in the erythrocyte membrane skeleton.
        J Cell Biol. 1987; 104: 527-536
        • Chassis JA
        • Mohandas N
        Erythrocyte membrane deformability and stability: two distinct membrane properties which are independently regulated by skeletal protein associations.
        J Cell Biol. 1986; 103: 343-350
        • Evans EA
        • Waugh RE
        Mechanochemical study of red cell membrane structure in situ.
        in: Cokelet GR Meiselman HJ Brooks DE Erythrocyte Mechanics and Blood Flow. Liss, New York1980: 31-56
        • Reinhart WH
        • Chien S
        Roles of cell geometry and cellular viscosity in red cell passage through narrow pores.
        Am J Physiol. 1985; 248: C473-C479
        • Allan D
        • Michell RH
        Calcium ion-dependent diacylglycerol accumulation in erythrocytes is associated with microvesiculation but not with efflux of potassium ions.
        Biochem J. 1977; 166: 495-499
        • Clark MM
        • Mohandas N
        • Feo C
        • Jacobs MS
        • Shohet SB
        Separate mechanisms of deformability loss in ATP-deplated and Ca-loaded erythrocytes.
        J Clin Invest. 1981; 67: 531-539
        • Allan D
        • Billah MM
        • Finean JB
        • Michell RH
        Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular CA2+.
        Nature (London). 1976; 261: 58-60
        • Allan D
        • Watts R
        • Michell RH
        Production of 1,2-diacylglycerol and phosphatidate in human erythrocytes treated with calcium ions and ionophore A23187.
        Biochem J. 1976; 156: 225-232
        • Allan D
        • Michell RH
        A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes.
        Biochim Biophys Acta. 1978; 508: 277-286
        • Anderson DR
        • Davis JL
        • Carraway KL
        Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease.
        J Biol Chem. 1977; 252: 6617-6623
        • Allen DW
        • Cadman S
        Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosolic proteins and proteases.
        Biochim Biophys Acta. 1979; 551: 1-9
        • Lorand L
        • Bjerrum OJ
        • Hawkins M
        • Lowe-Krentz L
        • Siefring Jr, GE
        Degradation of transmembrane proteins in Ca2+-enriched human erythrocytes. An immunochemical study.
        J Biol Chem. 1983; 258: 5300-5305
        • Lorand L
        • Weissmann LB
        • Epel DL
        • Bruner-Lorand J
        Role of the intrinsic transglutaminase in the Ca2+-mediated crosslinking of erythrocyte proteins.
        in: Proc Natl Acad Sci USA. 73. 1976: 4479-4481
        • Baker RF
        Membrane deformability of metabolically depleted human red cells.
        Blood Cells. 1981; 7: 551-558
        • Kosower NS
        • Kosower EM
        • Wertheim B
        • Correa WS
        Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide.
        Biochem Biophys Res Commun. 1969; 37: 593-596
        • Fischer TM
        • Haest CWM
        • Stohr M
        • Kamp D
        • Deuticke B
        Selective alternation of erythrocyte deformability by SH-reagents. Evidence for an involvement of spectrin in membrane shear elasticity.
        Biochim Biophys Acta. 1978; 510: 270-282
        • Johnson GJ
        • Allen DW
        • Flynn RP
        • Finkel B
        • White JG
        Decreased survival in vivo of diamide-incubated dog erythrocytes. A model of oxidant-induced hemolysis.
        J Clin Invest. 1980; 66: 955-961
        • Driessen GK
        • Fischer TM
        • Haest CW
        • Inhoffen W
        • Schmid-Schonbein H
        Flow behavior of rigid red blood cells in the microcirculation.
        Int J Microcirc Clin Exp. 1984; 3: 197-210
        • Haest CWM
        • Plasa G
        • Kamp D
        • Deuticke B
        Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.
        Biochim Biophys Acta. 1978; 509: 21-32
        • Mohandas N
        • Wyatt J
        • Mel SF
        • Rossi ME
        • Shohet SB
        Lipid translocation across the human erythrocyte membrane. Regulatory factors.
        J Biol Chem. 1982; 257: 6537-6543
        • Jacob HS
        • Jandl JH
        Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of hydrolysis.
        J Clin Invest. 1962; 41: 779-792
        • Jacob HS
        • Jandl JH
        Effects of sulfhydryl inhibition on red blood cells. II. Studies in vivo.
        J Clin Invest. 1962; 41: 1514-1523
        • Smith DK
        • Palek J
        Sulfhydryl reagents induce altered spectrin self-association, skeletal instability, and increased thermal sensitivity of red cells.
        Blood. 1983; 62: 1190-1196
        • Wolfe LC
        • Byrne AM
        • Lux SE
        Molecular defect in the membrane skeleton of blood bank-stored red cells. Abnormal spectrin-protein 4.1-actin complex formation.
        J Clin Invest. 1986; 78: 1681-1686
        • Sheetz MP
        • Casaly J
        2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons.
        J Biol Chem. 1980; 255: 9955-9960
        • Waugh RE
        Effect of 2,3-diphosphoglycerate on the mechanical properties of erythrocyte membrane.
        Blood. 1986; 68: 231-238
        • Shaklai N
        • Benitez L
        • Ranney HM
        Binding of 2,3-diphosphoglycerate to spectrin and its effect on oxygen affinity of hemoglobin.
        Am J Physiol. 1978; 234: C36-C40
        • LaCelle PL
        Alteration of deformability of the erythrocyte membrane in stored blood.
        Transfusion. 1969; 9: 238-245
        • Kucera W
        • Wegner G
        • Lerche D
        Investigations on the deformability of human red blood cells stored in different preservation solutions.
        Biomed Biochim Acta. 1985; 44: 1459-1467
        • Galea G
        Filterability of ACD-stored red cells.
        Vox Sang. 1986; 51: 152-156
        • Nakao M
        • Nakao T
        • Tatibana M
        • Yoshikawa H
        • Abe T
        Effect of inosine and adenine on adenosine triphosphate regeneration and shape transformation in long-stored erythrocytes.
        Biochim Biophys Acta. 1959; 32: 564-565
        • Haradin AR
        • Weed RI
        • Reed CF
        Changes in physical properties of stored erythrocytes. Relationship to survival in vivo.
        Transfusion. 1969; 9: 229-237
        • Shukla SD
        • Coleman R
        • Finean JB
        • Michell RH
        The use of phospholipase C to detect structural changes in the membranes of human erythrocytes aged by storage.
        Biochim Biophys Acta. 1978; 512: 341-349
        • Bartlett GR
        Red cell metabolism: Review highlighting changes during storage.
        in: Greenwalt TJ Jamieson GA The Human Red Cell in Vitro. Grune & Stratton, New York1973: 5-28
        • Hogman CF
        • De Verdier C-H
        • Ericson A
        • Hedlund K
        • Sandhagen B
        Cell shape and total adenylate concentration as important factors for posttransfusion survival of erythrocytes.
        Biomed Biochim Acta. 1983; 42: S327-S331
        • Wallas CH
        Sodium and potassium changes in blood bank stored human erythrocytes.
        Transfusion. 1979; 19: 210-215
        • Wiley JS
        • McCulloch KE
        • Bowden DS
        Increased calcium permeability of cold-stored erythrocytes.
        Blood. 1982; 60: 92-98
        • Wagner GM
        • Chiu DT-Y
        • Qju J-H
        • Heath RH
        • Lubin BH
        Spectrin oxidation correlates with membrane vesiculation in stored red blood cells.
        Blood. 1987; 69: 1777-1781
        • Rumsby MG
        • Trotter J
        • Allan D
        • Michell RH
        Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte shape transformation.
        Trans Biochem Soc. 1977; 5: 126-128
        • Shukla SD
        • Berriman J
        • Coleman R
        • Finean JB
        • Michell RH
        Membrane protein segregation during release of microvesicles from human erythrocytes.
        FEBS Lett. 1978; 90: 289-292
        • Greenwalt TJ
        • Bryan DJ
        • Dumaswala UT
        Erythrocyte membrane vesiculation and changes in membrane composition during storage in citrate-phosphate-dextrose-adenine-1.
        Vox Sang. 1984; 47: 261:270
        • Rapoport S
        Dimensional, osmotic, and chemical changes of erythrocytes in stored blood. I. Blood preserved in sodium citrate, neutral, and acid citrate-glucose (ACD) mixtures.
        J Clin Invest. 1947; 26: 591-615
        • Nakao K
        • Wada T
        • Kamiyama T
        • Nakao M
        • Nagano K
        A direct relationship between adenosine triphosphate-level and in vivo viability of erythrocytes.
        Nature (London). 1962; 194: 877-878
        • Nakao M
        • Nakao T
        • Yamazoe S
        • Yoshikawa H
        Adenosine triphosphate and shape of erythrocytes.
        J. Biochem. 1961; 49: 487-492
        • Weed RI
        • LaCelle PL
        • Merrill EW
        Metabolic dependence of red cell deformability.
        J Clin Invest. 1969; 48: 795-809
        • Bunn HF
        • Ransil BJ
        • Chao A
        The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin.
        J Biol Chem. 1971; 246: 5273-5279
        • Bock JL
        • Wenz B
        • Gupta RK
        Changes in intracellular Mg adenosine triphosphate and ionized Mg2+ during blood storage: detection by 31P nuclear magnetic resonance spectroscopy.
        Blood. 1985; 65: 1526-1530
        • Bock JL
        • Wenz B
        • Gupta RK
        Studies on the mechanism of decreased NMR-measured free magnesium in stored erythrocytes.
        Biochim Biophys Acta. 1987; 928: 8-12
        • Jaffe EK
        • Cohn M
        Diastereomers of the nucleoside phosphorothioates as probes of the structure of the metal nucleoside substrates and of the nucleotide binding site of yeast hexokinase.
        J Biol Chem. 1979; 254: 10839-10845
        • Wolfe LC
        The membrane and the lesions of storage in preserved red cells.
        Transfusion. 1985; 25: 185-203
        • Wagner GM
        • Chiu DT-Y
        • Yee MC
        • Lubin BH
        Red cell vesiculation — a common membrane physiologic event.
        J Lab Clin Med. 1986; 108: 315-324
        • Haest CWM
        • Deuticke B
        Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane.
        Biochim Biophys Acta. 1976; 436: 353-365
        • Sheetz MP
        • Singer SJ
        Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interaction.
        in: Proc Natl Acad Sci USA. 71. 1974: 4457-4461
        • Allan D
        • Thomas P
        • Michell RH
        Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature.
        Nature (London). 1978; 276: 289-290
        • Allan D
        • Thomas P
        Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation.
        Biochem J. 1981; 198: 433-440
        • Ahkong QF
        • Fisher D
        • Tampion W
        • Lucy JA
        The fusion of erythrocytes by fatty acids, esters, retinol, and α-tocopherol.
        Biochem J. 1973; 136: 147-155
        • Armitage IM
        • Shapiro DL
        • Furthmayr H
        • Marchesi VT
        31P nuclear magnetic resonance evidence for polyphosphoinositide associated with the hydrophobic segment of glycophorin A.
        Biochemistry. 1977; 16: 1317-1320
        • Schwartz RS
        • Chiu DT-Y
        • Lubin B
        Studies on the organization of plasma membrane phospholipids in human erythrocytes.
        in: Kruckeberg WC Eaton JW Aster J Brewer GJ Erythrocyte Membranes 3: Recent Clinical and Experimental Advances. Liss, New York1984: 89-122
        • Williamson P
        • Schlegel R
        Maintenance of phospholipid asymmetry and its role in erythrocyte pathology.
        in: Kruckeberg WC Eaton JW Aster J Brewer GJ Erythrocyte Membranes 3: Recent Clinical and Experimental Advances. Liss, New York1984: 123-136
        • Chandra R
        • Joshi PC
        • Bajpai VK
        • Gupta CM
        Membrane phospholipid organization in calcium-loaded human erythrocytes.
        Biochim Biophys Acta. 1987; 902: 253-262
        • Shukla SD
        • Billah MM
        • Coleman R
        • Finean JB
        • Michell RH
        Modulation of the organization of erythrocyte membrane phospholipids by cytoplasmic ATP. The susceptibility of isoionic human erythrocyte ghosts to attack by detergents and phospholipase C.
        Biochim Biophys Acta. 1978; 509: 48-57
        • Seigneuret M
        • Devaux PF
        ATP-dependent asymmetric distribution of spinlabeled phospholipids in the erythrocyte membrane: relation to shape change.
        in: Proc Natl Acad Sci USA. 81. 1984: 3751-3755
        • Morrot G
        • Cribier S
        • Devaux PF
        • Geldwerth D
        • Davoust J
        • Bureau JF
        • Fellman P
        • Herve P
        • Frilley B
        Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane.
        in: Proc Natl Acad Sci USA. 83. 1986: 6863-6867
        • Williamson P
        • Antia R
        • Schlegel RA
        Maintenance of membrane phospholipid asymmetry. Lipid-cytoskeletal interactions or lipid pump?.
        FEBS Lett. 1987; 219: 316-320
        • Cullis PR
        • de Kruijff B
        The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study.
        Biochim Biophys Acta. 1978; 513: 31-42
        • Cullis PR
        • de Kruijff B
        Lipid polymorphism and the functional roles of lipids in biological membranes.
        Biochim Biophys Acta. 1979; 559: 399-420
        • Demel RA
        • Geurts van Kessel WSM
        • Zwaal RFA
        • Roelofsen B
        • van Deenen LLM
        Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers.
        Biochim Biophys Acta. 1975; 406: 97-107
        • Zwaal RFA
        • Roelofsen B
        • Comfurius P
        • van Deenen LLM
        Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases.
        Biochim Biophys Acta. 1975; 406: 83-96
        • Mombers C
        • Verkleij AJ
        • de Gier J
        • van Deenen LLM
        The interaction of spectrin-actin and synthetic phospholipids. II. The interaction with phosphatidylserine.
        Biochim Biophys Acta. 1979; 551: 271-281
        • Hope MJ
        • Cullis PR
        The bilayer stability of inner monolayer lipids from the human erythrocyte.
        FEBS Lett. 1979; 107: 323-326
        • Hope MJ
        • Cullis PR
        The role of nonbilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens.
        Biochim Biophys Acta. 1981; 640: 82-90
        • Cullis PR
        Hydrocarbon phase transitions, heterogeneous lipid distributions and lipid-protein interactions in erythrocyte membranes.
        FEBS Lett. 1976; 68: 173-176
        • Juliano RL
        • Kimelberg HK
        • Papahadjopoulos D
        Synergistic effects of a membrane protein (spectrin) and Ca2+ on the Na+ permeability of phospholipid vesicles.
        Biochim Biophys Acta. 1971; 241: 894-905
        • Jackson RL
        • Pattus F
        • Demel RA
        Interaction of plasma apolipoproteins with lipid monolayers.
        Biochim Biophys Acta. 1979; 556: 369-387
        • Dressler V
        • Haest CWM
        • Plasa F
        • Deuticke B
        • Erusalimsky JD
        Stabilizing factors of phospholipid asymmetry in the erythrocyte membrane.
        Biochim Biophys Acta. 1984; 775: 189-196
        • Williamson P
        • Bateman J
        • Kozarsky K
        • Mattocks K
        • Hermanowicz N
        • Choe H-R
        • Schlegel RA
        Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane.
        Cell. 1982; 30: 725-733
        • Deuticke B
        • Poser B
        • Lutkemeier P
        • Haest CWM
        Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide.
        Biochim Biophys Acta. 1983; 731: 196-210
        • Bergmann WL
        • Dressler V
        • Haest CWM
        • Deuticke B
        Cross-linking of SH-groups in the erythrocyte membrane enhances transbilayer reorientation of phospholipids. Evidence for a limited access of phospholipids to the reorientation sites.
        Biochim Biophys Acta. 1984; 769: 390-398