Advertisement

Blood coagulation dissected

  • Edward L.G. Pryzdial
    Correspondence
    Corresponding author at: Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada.
    Affiliations
    Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada

    Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Frank M.H. Lee
    Affiliations
    Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Bryan H. Lin
    Affiliations
    Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Rolinda L.R. Carter
    Affiliations
    Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Tseday Z. Tegegn
    Affiliations
    Centre for Innovation, Canadian Blood Services, Ottawa, ON, Canada

    Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada

    Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
    Search for articles by this author
  • Mark J. Belletrutti
    Affiliations
    Pediatric Hematology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
    Search for articles by this author

      Abstract

      Hemostasis is the physiological control of bleeding and is initiated by subendothelial exposure. Platelets form the primary vascular seal in three stages (localization, stimulation and aggregation), which are triggered by specific interactions between platelet surface receptors and constituents of the subendothelial matrix. As a secondary hemostatic plug, fibrin clot formation is initiated and feedback-amplified to advance the seal and stabilize platelet aggregates comprising the primary plug. Once blood leakage has been halted, the fibrinolytic pathway is initiated to dissolve the clot and restore normal blood flow. Constitutive and induced anticoagulant and antifibrinolytic pathways create a physiological balance between too much and too little clot production. Hemostatic imbalance is a major burden to global healthcare, resulting in thrombosis or hemorrhage.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mozaffarian D.
        Global scourge of cardiovascular disease: time for health care systems reform and precision population health.
        J Am Coll Cardiol. 2017; 70: 26-28
        • Blair P.
        • Flaumenhaft R.
        Platelet alpha-granules: basic biology and clinical correlates.
        Blood Rev. 2009; 23: 177-189
        • Golebiewska E.M.
        • Poole A.W.
        Platelet secretion: from haemostasis to wound healing and beyond.
        Blood Rev. 2015; 29: 153-162
        • Ren Q.
        • Ye S.
        • Whiteheart S.W.
        The platelet release reaction: just when you thought platelet secretion was simple.
        Curr Opin Hematol. 2008; 15: 537-541
        • Semple J.W.
        • Italiano Jr., J.E.
        • Freedman J.
        Platelets and the immune continuum.
        Nat Rev Immunol. 2011; 11: 264-274
        • Papayannopoulos V.
        Neutrophil extracellular traps in immunity and disease.
        Nat Rev Immunol. 2018; 18: 134-147
        • Arzanian M.T.
        Inherited thrombocytopenia with a different type of gene mutation: a brief literature review and two case studies.
        Iran J Pediatr. 2016; 26: e4105
        • Cines D.B.
        • Bussel J.B.
        • McMillan R.B.
        • Zehnder J.L.
        Congenital and acquired thrombocytopenia.
        Hematol Am Soc Hematol Educ Program. 2004; : 390-406
        • Savoia A.
        • Kunishima S.
        • De RD Zieger B.
        • Rand M.L.
        • Pujol-Moix N.
        • Caliskan U.
        • et al.
        Spectrum of the mutations in Bernard-Soulier syndrome.
        Hum Mutat. 2014; 35: 1033-1045
        • Gunay-Aygun M.
        • Falik-Zaccai T.C.
        • Vilboux T.
        • Zivony-Elboum Y.
        • Gumruk F.
        • Cetin M.
        • et al.
        NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet alpha-granules.
        Nat Genet. 2011; 43: 732-734
        • Simon D.
        • Kunicki T.
        • Nugent D.
        Platelet function defects.
        Haemophilia. 2008; 14: 1240-1249
        • Peretz H.
        • Rosenberg N.
        • Landau M.
        • Usher S.
        • Nelson E.J.
        • Mor-Cohen R.
        • et al.
        Molecular diversity of Glanzmann thrombasthenia in southern India: new insights into mRNA splicing and structure-function correlations of alphaIIbbeta3 integrin (ITGA2B, ITGB3).
        Hum Mutat. 2006; 27: 359-369
        • Schubert S.
        • Weyrich A.S.
        • Rowley J.W.
        A tour through the transcriptional landscape of platelets.
        Blood. 2014; 124: 493-502
        • Smith S.A.
        • Morrissey J.H.
        Polyphosphate: a new player in the field of hemostasis.
        Curr Opin Hematol. 2014; 21: 388-394
        • Yau J.W.
        • Teoh H.
        • Verma S.
        Endothelial cell control of thrombosis.
        BMC Cardiovasc Disord. 2015; 15: 130
        • Fukao H.
        • Matsuo O.
        Antithrombotic regulation in human endothelial cells by fibrinolytic factors.
        Semin Thromb Hemost. 2000; 26: 33-38
        • Rajendran P.
        • Rengarajan T.
        • Thangavel J.
        • Nishigaki Y.
        • Sakthisekaran D.
        • Sethi G.
        • et al.
        The vascular endothelium and human diseases.
        Int J Biol Sci. 2013; 9: 1057-1069
        • Metcalf D.J.
        • Nightingale T.D.
        • Zenner H.L.
        • Lui-Roberts W.W.
        • Cutler D.F.
        Formation and function of Weibel-Palade bodies.
        J Cell Sci. 2008; 121: 19-27
        • WEIBEL E.R.
        • Palade G.E.
        New cytoplasmic components in arterial endothelia.
        J Cell Biol. 1964; 23: 101-112
        • Valentijn K.M.
        • Sadler J.E.
        • Valentijn J.A.
        • Voorberg J.
        • Eikenboom J.
        Functional architecture of Weibel-Palade bodies.
        Blood. 2011; 117: 5033-5043
        • Pryzdial E.L.G.
        Maestro tissue factor reaches new HEIGHT.
        Blood. 2017; 130: 1604-1605
        • Rao L.V.
        • Rapaport S.I.
        Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation.
        Proc Natl Acad Sci U S A. 1988; 85: 6687-6691
        • Osterud B.
        • Rapaport S.I.
        Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation.
        Proc Natl Acad Sci U S A. 1977; 74: 5260-5264
        • Kamikubo Y.
        • Mendolicchio G.L.
        • Zampolli A.
        • Marchese P.
        • Rothmeier A.S.
        • Orje J.N.
        • et al.
        Selective factor VIII activation by the tissue factor-factor VIIa-factor Xa complex.
        Blood. 2017; 130: 1661-1670
        • Rothmeier A.
        • Ruf W.
        Protease-activated receptor 2 signaling in inflammation.
        Semin Immunopathol. 2012; 34: 133-149
        • Carmeliet P.
        • Mackman N.
        • Moons L.
        • Luther T.
        • Gressens P.
        • Van V L.
        • et al.
        Role of tissue factor in embryonic blood vessel development.
        Nature. 1996; 383: 73-75
        • Todoroki N.
        • Watanabe Y.
        • Akaike T.
        • Katagiri Y.
        • Tanoue K.
        • Yamazaki H.
        • et al.
        Enhancement by IL-1 beta and IFN-gamma of platelet activation: adhesion to leukocytes via GMP-140/PADGEM protein (CD62).
        Biochem Biophys Res Commun. 1991; 179: 756-761
        • Key N.S.
        • Bach R.R.
        • Vercellotti G.M.
        • Moldow C.F.
        Herpes simplex virus type 1 does not require productive infection to induce tissue factor in human umbilical vein endothelial cells.
        Lab Invest. 1993; 68: 645-651
        • Butenas S.
        Tissue factor structure and function.
        Scientifica (Cairo). 2012; 2012https://doi.org/10.6064/2012/964862
        • Schwertz H.
        • Tolley N.D.
        • Foulks J.M.
        • Denis M.M.
        • Risenmay B.W.
        • Buerke M.
        • et al.
        Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets.
        J Exp Med. 2006; 203: 2433-2440
        • Badeanlou L.
        • Furlan-Freguia C.
        • Yang G.
        • Ruf W.
        • Samad F.
        Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation.
        Nat Med. 2011; 17: 1490-1497
        • Lam D.K.
        • Schmidt B.L.
        Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway.
        Pain. 2010; 149: 263-272
        • Pryzdial E.L.
        • Sutherland M.R.
        • Ruf W.
        The procoagulant envelope virus surface: contribution to enhanced infection.
        Thromb Res. 2014; 133: S15-S17
        • Egorina E.M.
        • Sovershaev M.A.
        • Bjorkoy G.
        • Gruber F.X.
        • Olsen J.O.
        • Parhami-Seren B.
        • et al.
        Intracellular and surface distribution of monocyte tissue factor: application to intersubject variability.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1493-1498
        • Versteeg H.H.
        • Ruf W.
        Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity.
        J Biol Chem. 2007; 282: 25416-25424
        • Maas C.
        • Renne T.
        Coagulation factor XII in thrombosis and inflammation.
        Blood. 2018; 131: 1903-1909
        • Hopp S.
        • Albert-Weissenberger C.
        • Mencl S.
        • Bieber M.
        • Schuhmann M.K.
        • Stetter C.
        • et al.
        Targeting coagulation factor XII as a novel therapeutic option in brain trauma.
        Ann Neurol. 2016; 79: 970-982
        • Lapecorella M.
        • Mariani G.
        Factor VII deficiency: defining the clinical picture and optimizing therapeutic options.
        Haemophilia. 2008; 14: 1170-1175
        • Peyvandi F.
        • Duga S.
        • Akhavan S.
        • Mannucci P.M.
        Rare coagulation deficiencies.
        Haemophilia. 2002; 8: 308-321
        • Gomez K.
        • Bolton-Maggs P.
        Factor XI deficiency.
        Haemophilia. 2008; 14: 1183-1189
        • Teitel J.M.
        • Rosenberg R.D.
        Protection of factor-Xa from neutralization by the heparin-antithrombin complex.
        J Clin Invest. 1983; 71: 1383-1391
        • Rose T.
        • Di C.E.
        Three-dimensional modeling of thrombin-fibrinogen interaction.
        J Biol Chem. 2002; 277: 18875-18880
        • Sheehan J.P.
        • Sadler J.E.
        Molecular mapping of the heparin-binding exosite of thrombin.
        Proc Natl Acad Sci U S A. 1994; 91: 5518-5522
        • Hall S.W.
        • Nagashima M.
        • Zhao L.
        • Morser J.
        • Leung L.L.K.
        Thrombin interacts with thrombomodulin, protein C, and thrombin-activatable fibrinolysis inhibitor via specific and distinct domains.
        J Biol Chem. 1999; 274: 25510-25516
        • Lechtenberg B.C.
        • Freund S.M.
        • Huntington J.A.
        GpIbalpha interacts exclusively with exosite II of thrombin.
        J Mol Biol. 2014; 426: 881-893
        • Huntington J.A.
        Molecular recognition mechanisms of thrombin.
        J Thromb Haemost. 2005; 3: 1861-1872
        • Narayanan S.
        Multifunctional roles of thrombin.
        Ann Clin Lab Sci. 1999; 29: 275-280
        • Brummel K.E.
        • Paradis S.G.
        • Butenas S.
        • Mann K.G.
        Thrombin functions during tissue factor-induced blood coagulation.
        Blood. 2005; 100: 148-152
        • Von dem Borne P.A.
        • Bajzar L.
        • Meijers J.C.M.
        • Nesheim M.E.
        • Bouma B.N.
        Thrombin-mediated activation of factor XI results in a thrombin-activatable fibrinolysis inhibitor-dependent inhibition of fibrinolysis.
        J Clin Invest. 1997; 99: 2323-2327
        • Fay P.J.
        Activation of factor VIII and mechanisms of cofactor action.
        Blood Rev. 2004; 18: 1-15
        • Emsley J.
        • McEwan P.A.
        • Gailani D.
        Structure and function of factor XI.
        Blood. 2010; 115: 2569-2577
        • Bos M.H.
        • Camire R.M.
        A bipartite autoinhibitory region within the B-domain suppresses function in factor V.
        J Biol Chem. 2012; 287: 26342-26351
        • Saenko E.L.
        • Shima M.
        • Rajalakshmi K.J.
        • Scandella D.
        A role for the C2 domain of factor VIII in binding to von Willebrand factor.
        J Biol Chem. 1994; 269: 11601-11605
        • Peyvandi F.
        • Garagiola I.
        • Young G.
        The past and future of haemophilia: diagnosis, treatments, and its complications.
        Lancet. 2016; 388: 187-197
        • Meeks S.L.
        • Abshire T.C.
        Abnormalities of prothrombin:a review of the pathophysiology,diagnosis, and treatment.
        Haemophilia. 2008; 14: 1159-1163
        • Talbot K.
        • Song J.
        • Eghdami L.
        • Tamura-Wells J.
        • Hewitt J.
        • Vickars L.
        • et al.
        Identification and cloning of novel mutations in a compound heterozygous factor V deficient patient.
        Blood. 2010; (abs)
        • Duckers C.
        • Simioni P.
        • Spiezia L.
        • Radu C.
        • Gavasso S.
        • Rosing J.
        • et al.
        Low plasma levels of tissue factor pathway inhibitor in patients with congenital factor V deficiency.
        Blood. 2008; 112: 3615-3623
        • Wolberg A.S.
        • Campbell R.A.
        Thrombin generation, fibrin clot formation and hemostasis.
        Transfus Apher Sci. 2008; 38: 15-23
        • Hethershaw E.L.
        • Cilia La Corte A.L.
        • Duval C.
        • Ali M.
        • Grant P.J.
        • Ariens R.A.
        • et al.
        The effect of blood coagulation factor XIII on fibrin clot structure and fibrinolysis.
        J Thromb Haemost. 2014; 12: 197-205
        • Rijken D.C.
        • Uitte de W.S.
        Inhibition of fibrinolysis by coagulation factor XIII.
        Biomed Res Int. 2017; 20171209676
        • Sakata Y.
        • Aoki N.
        Cross-linking of alpha 2-plasmin inhibitor to fibrin by fibrin-stabilizing factor.
        J Clin Invest. 1980; 65: 290-297
        • Fraser S.R.
        • Booth N.A.
        • Mutch N.J.
        The antifibrinolytic function of factor XIII is exclusively expressed through alpha(2)-antiplasmin cross-linking.
        Blood. 2011; 117: 6371-6374
        • Valnickova Z.
        • Enghild J.J.
        Human procarboxypeptidase U, or thrombin-activable fibrinolysis inhibitor, is a substrate for transglutaminases.
        J Biol Chem. 1998; 273: 27220-27224
        • Jennings L.K.
        Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis.
        Thromb Haemost. 2009; 102: 248-257
        • Jennings L.K.
        Role of platelets in atherothrombosis.
        Am J Cardiol. 2009; 103: 4A-10A
        • Kasahara K.
        • Kaneda M.
        • Miki T.
        • Iida K.
        • Sekino-Suzuki N.
        • Kawashima I.
        • et al.
        Clot retraction is mediated by factor XIII-dependent fibrin-alphaIIbbeta3-myosin axis in platelet sphingomyelin-rich membrane rafts.
        Blood. 2013; 122: 3340-3348
        • Coller B.S.
        Platelets and thrombolytic therapy.
        N Engl J Med. 1990; 322: 33-42
        • Tocantins L.M.
        Platelets and structure and physical properties of blood clots.
        Am J Physiol. 1936; 114: 709-715
        • Undas A.
        • Zawilska K.
        • Ciesla-Dul M.
        • Lehmann-Kopydlowska A.
        • Skubiszak A.
        • Ciepluch K.
        • et al.
        Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives.
        Blood. 2009; 114: 4272-4278
        • Undas A.
        Fibrin clot properties and their modulation in thrombotic disorders.
        Thromb Haemost. 2014; 112: 32-42
        • Aleman M.M.
        • Byrnes J.R.
        • Wang J.G.
        • Tran R.
        • Lam W.A.
        • Di Paola J.
        • et al.
        Factor XIII activity mediates red blood cell retention in venous thrombi.
        J Clin Invest. 2014; 124: 3590-3600
        • Byrnes J.R.
        • Duval C.
        • Wang Y.
        • Hansen C.E.
        • Ahn B.
        • Mooberry M.J.
        • et al.
        Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin alpha-chain crosslinking.
        Blood. 2015; 126: 1940-1948
        • Hanna M.
        Congenital deficiency of factor 13: report of a family from Newfoundland with associated mild deficiency of factor XII.
        Pediatrics. 1970; 46: 611-619
        • Collen D.
        • Lijnen H.R.
        The tissue-type plasminogen activator story.
        Arterioscler Thromb Vascr Biol. 2009; 29: 1151-1155
        • Flemmig M.
        • Melzig M.F.
        Serine-proteases as plasminogen activators in terms of fibrinolysis.
        J Pharm Pharmacol. 2012; 64: 1025-1039
        • Lijnen H.R.
        • Collen D.
        Tissue-type plasminogen activator.
        in: Barrett A.J. Rawlings N.D. Woessner J.F. Handbook of proteolytic enzymes. Academic Press, 1998: 184-190
        • Longstaff C.
        • Thelwell C.
        • Williams S.C.
        • MMCG Silva
        • Szabo L.
        • Kolev K.
        The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies.
        Blood. 2011; 117: 661-668
        • Silva M.M.C.G.
        • Thelwell C.
        • Williams S.C.
        • Longstaff C.
        Regulation of fibrinolysis by C-terminal lysines operates through plasminogen and plasmin but not tissue-type plasminogen activator.
        J Thromb Haemost. 2012; 10: 2354-2360
        • Hoylaerts M.
        • Rijken D.C.
        • Lijnen H.R.
        • Collen D.
        Kinetics of the activation of plasminogen by human-tissue plasminogen-activator - role of fibrin.
        J Biol Chem. 1982; 257: 2912-2919
        • Kim P.Y.
        • Tieu L.D.
        • Stafford A.R.
        • Fredenburgh J.C.
        • Weitz J.I.
        A high affinity interaction of plasminogen with fibrin is not essential for efficient activation by tissue-type plasminogen activator.
        J Biol Chem. 2012; 287: 4652-4661
        • Lijnen H.R.
        • Collen D.
        Molecular interactions between tissue-type plasminogen activator and plasminogen.
        Meth Enz. 1994; 223: 197-206
        • Pryzdial E.L.
        • Meixner S.C.
        • Talbot K.
        • Eltringham-Smith L.J.
        • Baylis J.R.
        • Lee F.M.
        • et al.
        Thrombolysis by chemically modified coagulation factor Xa.
        J Thromb Haemost. 2016; 14: 1844-1854
        • Pryzdial E.L.G.
        • Bajzar L.
        • Nesheim M.E.
        Prothrombinase components can accelerate tissue plasminogen activator-catalyzed plasminogen activation.
        J Biol Chem. 1995; 270: 17871-17877
        • Ling Q.
        • Jacovina A.T.
        • Deora A.
        • Febbraio M.
        • Simantov R.
        • Silverstein R.L.
        • et al.
        Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo.
        J Clin Invest. 2004; 113: 38-48
        • Surette A.P.
        • Madureira P.A.
        • Phipps K.D.
        • Miller V.A.
        • Svenningsson P.
        • Waisman D.M.
        Regulation of fibrinolysis by S100A10 in vivo.
        Blood. 2011; 118: 3172-3181
        • Boose J.A.
        • Kuismanen E.
        • Gerard R.
        • Sambrook J.
        • Gething M.J.
        The single-chain form of tissue-type plasminogen activator has catalytic activity: studies with a mutant enzyme that lacks the cleavage site.
        Biochem (Lond). 1989; 28: 635-643
        • Petersen L.C.
        • Johannessen M.
        • Foster D.
        • Kumar A.
        • Mulvihill E.
        The effect of polymerised fibrin on the catalytic activities of one-chain tissue-type plasminogen activator as revealed by an analogue resistant to plasmin cleavage.
        Biochim Biophys Acta. 1988; 952: 245-254
        • Horrevoets A.J.G.
        • Smilde A.E.
        • Fredenburgh J.C.
        • Pannekoek H.
        • Nesheim M.E.
        The activation-resistant conformation of recombinant human plasminogen is stabilized by basic residues in the amino-terminal hinge region.
        J Biol Chem. 1995; 270: 15770-15776
        • Gong Y.
        • Kim S.-O.
        • Felez J.
        • Grella D.K.
        • Castellino F.J.
        • Miles L.A.
        Conversion of Glu-Plasminogen to Lys-Plasminogen is necessary for optimal stimulation of plasminogen activation on the endothelial cell surface.
        J Biol Chem. 2001; 276: 19078-19083
        • Miles L.A.
        • Castellino F.J.
        • Gong Y.
        Critical role for conversion of Glu-plasminogen to Lys-plasminogen for optimal stimulation of plasminogen activation on cell surfaces.
        Trends Cardiovasc Med. 2003; 13: 21-30
        • Longstaff C.
        • Kolev K.
        Basic mechanisms and regulation of fibrinolysis.
        J Thromb Haemost. 2015; 13: S98-S105
        • Huntington J.A.
        Serpin structure, function and dysfunction.
        J Thromb Haemost. 2011; 9: 26-34
        • Patnaik M.M.
        • Moll S.
        Inherited antithrombin deficiency: a review.
        Haemophilia. 2008; 14: 1229-1239
        • van D P.
        • Rosing J.
        • Wielders S.J.
        • Hackeng T.M.
        • Castoldi E.
        The C-terminus of tissue factor pathway inhibitor-alpha inhibits factor V activation by protecting the Arg(1545) cleavage site.
        J Thromb Haemost. 2017; 15: 140-149
        • Broze Jr., G.J.
        • Girard T.J.
        Factor V, tissue factor pathway inhibitor, and east Texas bleeding disorder.
        J Clin Invest. 2013; 123: 3710-3712
        • Vincent L.M.
        • Tran S.
        • Livaja R.
        • Bensend T.A.
        • Milewicz D.M.
        • Dahlback B.
        Coagulation factor V(A2440G) causes east Texas bleeding disorder via TFPIalpha.
        J Clin Invest. 2013; 123: 3777-3787
        • Mast A.E.
        Tissue factor pathway inhibitor: multiple anticoagulant activities for a single protein.
        Arterioscler Thromb Vasc Biol. 2016; 36: 9-14
        • Krishnaswamy S.
        • Betz A.
        Exosites determine macromolecular substrate recognition by prothrombinase.
        Biochemistry (Lond.). 1997; : 12080-12086
        • Nazir S.
        • Gadi I.
        • Al-Dabet M.M.
        • Elwakiel A.
        • Kohli S.
        • Ghosh S.
        • et al.
        Cytoprotective activated protein C averts Nlrp3 inflammasome-induced ischemia-reperfusion injury via mTORC1 inhibition.
        Blood. 2017; 130: 2664-2677
        • Mohan Rao L.V.
        • Esmon C.T.
        • Pendurthi U.R.
        Endothelial cell protein C receptor: a multiliganded and multifunctional receptor.
        Blood. 2014; 124: 1553-1562
        • Kujovich J.L.
        • Factor V.
        • Leiden thrombophilia
        Genet Med. 2011; 13: 1-16
        • Talbot K.
        • Meixner S.C.
        • Pryzdial E.L.G.
        Enhanced fibrinolysis by proteolysed coagulation factor Xa.
        Biochim Biophys Acta. 2010; 1804: 723-730
        • Talbot K.
        • Meixner S.C.
        • Pryzdial E.L.G.
        Proteolytic modulation of factor Xa-antithrombin complex enhances fibrinolysis in plasma.
        Biochim Biophys Acta. 2013; 1834: 989-995
        • Zeibdawi A.R.
        • Pryzdial E.L.G.
        Mechanism of FVa inactivation by plasmin: loss of A2 and A3 domains from a Ca2+-dependent complex of fragments bound to phospholipid.
        J Biol Chem. 2001; 276: 19929-19936
        • Hur W.S.
        • Mazinani N.
        • Lu X.J.
        • Britton H.M.
        • Byrnes J.R.
        • Wolberg A.S.
        • et al.
        Coagulation factor XIIIa is inactivated by plasmin.
        Blood. 2015; 126: 2329-2337
        • Mosesson M.W.
        • Siebenlist K.R.
        • Hernandez I.
        • Lee K.N.
        • Christiansen V.J.
        • McKee P.A.
        Evidence that alpha2-antiplasmin becomes covalently ligated to plasma fibrinogen in the circulation: a new role for plasma factor XIII in fibrinolysis regulation.
        J Thromb Haemost. 2008; 6: 1565-1570
        • Booth N.A.
        • Simpson A.J.
        • Croll A.
        • Bennett B.
        • MacGregor I.R.
        Plasminogen activator inhibitor (PAI-1) in plasma and platelets.
        Br J Haematol. 1988; 70: 327-333
        • Stringer H.A.
        • van Swieten P.
        • Heijnen H.F.
        • Sixma J.J.
        • Pannekoek H.
        Plasminogen activator inhibitor-1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop.
        Arterioscler Thromb. 1994; 14: 1452-1458
        • Handt S.
        • Jerome W.G.
        • Tietze L.
        • Hantgan R.R.
        Plasminogen activator inhibitor-1 secretion of endothelial cells increases fibrinolytic resistance of an in vitro fibrin clot: evidence for a key role of endothelial cells in thrombolytic resistance.
        Blood. 1996; 87: 4204-4213
        • Thelwell C.
        • Longstaff C.
        The regulation by fibrinogen and fibrin of tissue plasminogen activator kinetics and inhibition by plasminogen activator inhibitor 1.
        J Thromb Haemost. 2007; 5: 804-811
        • Gong L.
        • Liu M.
        • Zeng T.
        • Shi X.
        • Yuan C.
        • Andreasen P.A.
        • et al.
        Crystal structure of the michaelis complex between tissue-type plasminogen activator and plasminogen activators Inhibitor-1.
        J Biol Chem. 2015; 290: 25795-25804
        • Gravanis I.
        • Tsirka S.E.
        Tissue-type plasminogen activator as a therapeutic target in stroke.
        Expert Opin Ther Targets. 2008; 12: 159-170
        • Bouma B.N.
        • Meijers J.C.
        Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U).
        J Thromb Haemost. 2003; 7: 1566-1574
        • Nesheim M.E.
        The biochemistry of TAFI.
        J Thromb Haemost. 2010; 8: 19
        • Bajzar L.
        • Morser J.
        • Nesheim M.
        TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex.
        J Biol Chem. 1996; 271: 16603-16608
        • Marar T.T.
        • Boffa M.B.
        Identification of a thrombomodulin interaction site on thrombin-activatable fibrinolysis inhibitor that mediates accelerated activation by thrombin.
        J Thromb Haemost. 2016; 14: 772-783
        • Binette T.M.
        • Taylor Jr., F.B.
        • Peer G.
        • Bajzar L.
        Thrombin-thrombomodulin connects coagulation and fibrinolysis: more than an in vitro phenomenon.
        Blood. 2007; 110: 3168-3175
        • Mao S.S.
        • Cooper C.M.
        • Wood T.
        • Shafer J.A.
        • Gardell S.J.
        Characterization of plasmin-mediated activation of plasma procarboxypeptidase B. Modulation by glycosaminoglycans.
        J Biol Chem. 1999; 274: 35046-35052