Advertisement

Viral safety of human platelet lysate for cell therapy and regenerative medicine: Moving forward, yes, but without forgetting the past

  • Thierry Burnouf
    Correspondence
    Corresponding author at: Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
    Affiliations
    Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan

    International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan

    Research Center of Biomedical Devices, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan

    International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Lassina Barro
    Affiliations
    International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Ouada Nebie
    Affiliations
    Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Yu-Wen Wu
    Affiliations
    Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
  • Hadi Goubran
    Affiliations
    Saskatoon Cancer Centre, Division of Oncology, College of Medicine, University of Saskatchewan, Canada
    Search for articles by this author
  • Folke Knutson
    Affiliations
    Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
    Search for articles by this author
  • Jerard Seghatchian
    Affiliations
    International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK
    Search for articles by this author
Published:October 31, 2019DOI:https://doi.org/10.1016/j.transci.2019.102674

      Abstract

      Growth factor-rich pooled human platelet lysate (HPL), made from human platelet concentrates, is one new blood-derived bioproduct that is attracting justified interest as a xeno-free supplement of growth media for human cell propagation for cell therapy. HPL can also find potentially relevant applications in the field of regenerative medicine. Therefore, the therapeutic applications of HPL go far beyond the standard clinical applications of the traditional blood products typically used in patients suffering from life-threatening congenital or acquired deficiencies in cellular components or proteins due to severe genetic diseases or trauma. A wider population of patients, suffering from various pathologies than has traditionally been the case, is thus, now susceptible to receiving a human blood-derived product. These patients would, therefore, be exposed to the possible, but avoidable, side effects of blood products, including transfusion-transmitted infections, most specifically virus transmissions. Unfortunately, not all manufacturers, suppliers, and users of HPL may have a strong background in the blood product industry. As such, they may not be fully aware of the various building blocks that should contribute to the viral safety of HPL as is already the case for any licensed blood products. The purpose of this manuscript is to reemphasize all the measures, including in regulatory aspects, capable of assuring that HPL exhibits a sufficient pathogen safety margin, especially when made from large pools of human platelet concentrates. It is vital to remember the past to avoid that the mistakes, which happened 30 to 40 years ago and led to the contamination of many blood recipients, be repeated due to negligence or ignorance of the facts.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        Model list of essential medicines.
        WHO, Geneva, Switzerland2019
        • Burnouf T.
        • Radosevich M.
        Reducing the risk of infection from plasma products: specific preventative strategies.
        Blood Rev. 2000; 14: 94-110
        • Ticehurst J.R.
        • Pisanic N.
        • Forman M.S.
        • Ordak C.
        • Heaney C.D.
        • Ong E.
        • et al.
        Probable transmission of hepatitis E virus (HEV) via transfusion in the United States.
        Transfusion. 2019; 59: 1024-1034
        • Dalton H.R.
        • Seghatchian J.
        Hepatitis E virus: emerging from the shadows in developed countries.
        Transfus Apher Sci. 2016; 55: 271-274
        • Busch M.P.
        • Kleinman S.H.
        • Nemo G.J.
        Current and emerging infectious risks of blood transfusions.
        Jama-J Am Med Assoc. 2003; 289: 959-962
        • Burnouf T.
        • Seghatchian J.
        Ebola virus convalescent blood products: where we are now and where we may need to go.
        Transfus Apher Sci. 2014; 51: 120-125
        • Burnouf T.
        Modern plasma fractionation.
        Transfus Med Rev. 2007; 21: 101-117
        • Dichtelmuller H.O.
        • Biesert L.
        • Fabbrizzi F.
        • Falbo A.
        • Flechsig E.
        • Groner A.
        • et al.
        Contribution to safety of immunoglobulin and albumin from virus partitioning and inactivation by cold ethanol fractionation: a data collection from Plasma Protein Therapeutics Association member companies.
        Transfusion. 2011; 51: 1412-1430
        • Burnouf T.
        • Strunk D.
        • Koh M.B.
        • Schallmoser K.
        Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?.
        Biomaterials. 2016; 76: 371-387
        • Henschler R.
        • Gabriel C.
        • Schallmoser K.
        • Burnouf T.
        • Koh M.B.C.
        Human platelet lysate current standards and future developments.
        Transfusion. 2019; 59: 1407-1413
        • Shih D.T.
        • Burnouf T.
        Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion.
        N Biotechnol. 2015; 32: 199-211
        • Strunk D.
        • Lozano M.
        • Marks D.C.
        • Loh Y.S.
        • Gstraunthaler G.
        • Schennach H.
        • et al.
        International Forum on GMP-grade human platelet lysate for cell propagation: summary.
        Vox Sang. 2018; 113: 80-87
        • Strunk D.
        • Lozano M.
        • Marks D.C.
        • Loh Y.S.
        • Gstraunthaler G.
        • Schennach H.
        • et al.
        International Forum on GMP-grade human platelet lysate for cell propagation.
        Vox Sang. 2018; 113: e1-e25
        • Chou M.L.
        • Wu J.W.
        • Gouel F.
        • Jonneaux A.
        • Timmerman K.
        • Renn T.Y.
        • et al.
        Tailor-made purified human platelet lysate concentrated in neurotrophins for treatment of Parkinson’s disease.
        Biomaterials. 2017; 142: 77-89
        • Costa-Almeida R.
        • Franco A.R.
        • Pesqueira T.
        • Oliveira M.B.
        • Babo P.S.
        • Leonor I.B.
        • et al.
        The effects of platelet lysate patches on the activity of tendon-derived cells.
        Acta Biomater. 2018; 68: 29-40
        • Babo P.S.
        • Cai X.
        • Plachokova A.S.
        • Reis R.L.
        • Jansen J.A.
        • Gomes M.E.
        • et al.
        The role of a platelet lysate-based compartmentalized system as a carrier of cells and platelet-origin cytokines for periodontal tissue regeneration.
        Tissue Eng Part A. 2016; 22: 1164-1175
        • Fontana F.
        • Mori M.
        • Riva F.
        • Makila E.
        • Liu D.
        • Salonen J.
        • et al.
        Platelet lysate-modified porous silicon microparticles for enhanced cell proliferation in wound healing applications.
        ACS Appl Mater Interfaces. 2016; 8: 988-996
        • Jooybar E.
        • Abdekhodaie M.J.
        • Alvi M.
        • Mousavi A.
        • Karperien M.
        • Dijkstra P.J.
        An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells.
        Acta Biomater. 2019; 83: 233-244
        • Sandri G.
        • Bonferoni M.C.
        • Rossi S.
        • Ferrari F.
        • Mori M.
        • Cervio M.
        • et al.
        Platelet lysate embedded scaffolds for skin regeneration.
        Expert Opin Drug Deliv. 2015; 12: 525-545
        • Stacey M.C.
        • Mata S.D.
        • Trengove N.J.
        • Mather C.A.
        Randomised double-blind placebo controlled trial of topical autologous platelet lysate in venous ulcer healing.
        Eur J Vasc Endovasc Surg. 2000; 20: 296-301
        • Zamani M.
        • Yaghoubi Y.
        • Movassaghpour A.
        • Shakouri K.
        • Mehdizadeh A.
        • Pishgahi A.
        • et al.
        Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: Are we ready for clinical use?.
        J Cell Physiol. 2019; 234: 17172-17186
        • Wagner E.R.
        • Bravo D.
        • Dadsetan M.
        • Riester S.M.
        • Chase S.
        • Westendorf J.J.
        • et al.
        Ligament tissue engineering using a novel porous polycaprolactone fumarate scaffold and adipose tissue-derived mesenchymal stem cells grown in platelet lysate.
        Tissue Eng Part A. 2015; 21: 2703-2713
        • Drew V.J.
        • Tseng C.L.
        • Seghatchian J.
        • Burnouf T.
        Reflections on dry eye syndrome treatment: therapeutic role of blood products.
        Front Med (Lausanne). 2018; 5: 33
        • Sanchez M.
        • Anitua E.
        • Delgado D.
        • Sanchez P.
        • Prado R.
        • Orive G.
        • et al.
        Platelet-rich plasma, a source of autologous growth factors and biomimetic scaffold for peripheral nerve regeneration.
        Expert Opin Biol Ther. 2017; 17: 197-212
        • Strandberg G.
        • Sellberg F.
        • Sommar P.
        • Ronaghi M.
        • Lubenow N.
        • Knutson F.
        • et al.
        Standardizing the freeze-thaw preparation of growth factors from platelet lysate.
        Transfusion. 2017; 57: 1058-1065
        • Anitua E.
        • Prado R.
        • Orive G.
        Allogeneic platelet-rich plasma: At the dawn of an off-the-Shelf therapy?.
        Trends Biotechnol. 2017; 35: 91-93
        • Schallmoser K.
        • Henschler R.
        • Gabriel C.
        • Koh M.B.C.
        • Burnouf T.
        Production and quality requirements of human platelet lysate: a position statement from the working party on cellular therapies of the international society of blood transfusion.
        Trends Biotechnol. 2019; https://doi.org/10.1016/j.tibtech.2019.06.002
        • Bieback K.
        • Fernandez-Muñoz B.
        • Pati S.
        • Schäfer R.
        Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society of Cell Therapy.
        Cytotherapy. 2019;
      1. 5.2.12. Raw materials of biological origin for the production of cell-based and gene therapy medicinal products - European Pharmacopoeia eu/en/ph-eur-9th-edition.
        Council of Europe, Strasbourg2016
        • Stühler A.
        • Blümel J.
        Spezifische Aspekte zur Virussicherheit von Produktionshilfsstoffen für somatische Zelltherapie-Arzneimittel.
        Bundesgesundheitsbl. 2015; 58: 1233-1238
        • Jonsdottir-Buch S.
        • Sigurgrimsdottir H.
        • Lieder R.
        • Sigurjonsson O.
        Expired pathogen inactivated platelet concentrates support differentiation and immunomodulation of mesenchymal stromal cells in culture.
        J Tissue Eng Regen Med. 2014; 8 (abstract): 374
        • Fazzina R.
        • Iudicone P.
        • Mariotti A.
        • Fioravanti D.
        • Procoli A.
        • Cicchetti E.
        • et al.
        Culture of human cell lines by a pathogen-inactivated human platelet lysate.
        Cytotechnology. 2016; 68: 1185-1195
        • Jonsdottir-Buch S.M.
        • Sigurgrimsdottir H.
        • Lieder R.
        • Sigurjonsson O.E.
        Expired and pathogen-inactivated platelet concentrates support differentiation and immunomodulation of mesenchymal stromal cells in culture.
        Cell Transplant. 2015; 24: 1545-1554
        • Viau S.
        • Chabrand L.
        • Eap S.
        • Lorant J.
        • Rouger K.
        • Goudaliez F.
        • et al.
        Pathogen reduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells.
        PLoS One. 2017; 12e0181406
        • Weusten J.
        • van Drimmelen H.
        • Vermeulen M.
        • Lelie N.
        A mathematical model for estimating residual transmission risk of occult hepatitis B virus infection with different blood safety scenarios.
        Transfusion. 2017; 57: 841-849
        • Anonymous
        European Medicine Agency - Guideline on plasma-derived medicinal products.
        2012 (Accessed 31 December 2018). London, UK
        • World Health Organization
        Guidelines on viral inactivation and removal procedures intended to assure the viral safety of human blood plasma products.
        2003 (Geneva)
        www.WHO.int/bloodproducts
        • World Health Organization
        Recommendations for the production, quality control and regulation of plasma for fractionation.
        World Health Organization, Geneva2005
      2. Committee for Proprietary Medicinal Products note for guidance on plasma -derived medicinal products. CPMP/BWP/269/95 rev.4.
        2009
        • Kreil T.R.
        Building blocks of the viral safety margins of industrial plasma products.
        Ann Blood. 2018; : 3
        • Kaiser-Guignard J.
        • Canellini G.
        • Lion N.
        • Abonnenc M.
        • Osselaer J.-C.
        • Tissot J.-D.
        The clinical and biological impact of new pathogen inactivation technologies on platelet concentrates.
        Blood Rev. 2014; 28: 235-241
        • Walsh G.M.
        • Shih A.W.
        • Solh Z.
        • Golder M.
        • Schubert P.
        • Fearon M.
        • et al.
        Blood-borne pathogens: a canadian blood services centre for innovation symposium.
        Transfus Med Rev. 2016; 30: 53-68
        • Lozano M.
        • Cid J.
        Platelet concentrates: balancing between efficacy and safety?.
        Presse Medicale (Paris, France: 1983). 2016; 45: e289-98
        • Marks D.
        • Faddy H.
        • Johnson L.
        Pathogen reduction technologies.
        ISBT Sci Ser. 2014; 9: 44-50
        • Salunkhe V.
        • van der Meer P.F.
        • de Korte D.
        • Seghatchian J.
        • Gutiérrez L.
        Development of blood transfusion product pathogen reduction treatments: a review of methods, current applications and demands.
        Transfus Apher Sci. 2015; 52: 19-34
        • Goodrich R.P.
        • Segatchian J.
        Special considerations for the use of pathogen reduced blood components in pediatric patients: an overview.
        Transfus Apher Sci. 2018; 57: 374-377
        • Chen L.
        • Yao M.
        Pathogen inactivation plays an irreplaceable role in safeguarding the safety of blood transfusion.
        J Antivir Antiretrovir. 2016; : 8
        • Drew V.J.
        • Barro L.
        • Seghatchian J.
        • Burnouf T.
        Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries.
        Blood Transfus. 2017; 15: 512-521
        • Tormey C.A.
        • Santhanakrishnan M.
        • Smith N.H.
        • Liu J.
        • Marschner S.
        • Goodrich R.P.
        • et al.
        Riboflavin‐ultraviolet light pathogen reduction treatment does not impact the immunogenicity of murine red blood cells.
        Transfusion. 2015;
        • Picker S.M.
        Pathogen reduction technologies: the best solution for safer blood?.
        J Blood Disord Transfus. 2013; : 2012
        • Pinto J.T.
        • Zempleni J.
        Riboflavin.
        Adv Nutr: Int Rev J. 2016; 7: 973-975
      3. US Food and Drug Administration Select Committee on GRAS Substances (SCOGS) Opinion: Riboflavin, Riboflavin-5′-phosphate.
        2015
        • Thiele T.
        • Pohler P.
        • Kohlmann T.
        • Sumnig A.
        • Aurich K.
        • Selleng K.
        • et al.
        Tolerance of platelet concentrates treated with UVC-light only for pathogen reduction--a phase I clinical trial.
        Vox Sang. 2015; 109: 44-51
        • Gravemann U.
        • Handke W.
        • Lambrecht B.
        • Schmidt J.P.
        • Muller T.H.
        • Seltsam A.
        Ultraviolet C light efficiently inactivates nonenveloped hepatitis A virus and feline calicivirus in platelet concentrates.
        Transfusion. 2018; 58: 2669-2674
        • Schlenke P.
        Pathogen inactivation technologies for cellular blood components: an update.
        Transfus Med Hemotherapy. 2014; 41: 309-325
        • Henderson E.E.
        • Tudor G.
        • Yang J.Y.
        Inactivation of the human immunodeficiency virus type 1 (HIV-1) by ultraviolet and X irradiation.
        Radiat Res. 1992; 131: 169-176
        • Hauser L.
        • Roque-Afonso A.M.
        • Beyloune A.
        • Simonet M.
        • Deau Fischer B.
        • Burin des Roziers N.
        • et al.
        Hepatitis E transmission by transfusion of Intercept blood system-treated plasma.
        Blood. 2014; 123: 796-797
        • Gowland P.
        • Fontana S.
        • Stolz M.
        • Andina N.
        • Niederhauser C.
        Parvovirus B19 passive transmission by transfusion of intercept(R) blood system-treated platelet concentrate.
        Transfus Med Hemother. 2016; 43: 198-202
        • Kwon S.Y.
        • Kim I.S.
        • Bae J.E.
        • Kang J.W.
        • Cho Y.J.
        • Cho N.S.
        • et al.
        Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma.
        Vox Sang. 2014; 107: 254-260
        • Solheim B.G.
        • Rollag H.
        • Svennevig J.L.
        • Arafa O.
        • Fosse E.
        • Bergerud U.
        Viral safety of solvent/detergent-treated plasma.
        Transfusion. 2000; 40: 84-90
        • Dichtelmuller H.O.
        • Biesert L.
        • Fabbrizzi F.
        • Gajardo R.
        • Groner A.
        • von Hoegen I.
        • et al.
        Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies.
        Transfusion. 2009; 49: 1931-1943
        • Shih D.T.B.
        • Chen J.C.
        • Chen W.Y.
        • Kuo Y.P.
        • Su C.Y.
        • Burnouf T.
        Expansion of adipose tissue mesenchymal stromal progenitors in serum‐free medium supplemented with virally inactivated allogeneic human platelet lysate.
        Transfusion. 2011; 51: 770-778
        • Ren J.
        • Ward D.
        • Chen S.
        • Tran K.
        • Jin P.
        • Sabatino M.
        • et al.
        Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum.
        J Transl Med. 2018; 16: 65
        • Viau S.
        • Eap S.
        • Chabrand L.
        • Lagrange A.
        • Delorme B.
        Viral inactivation of human platelet lysate by gamma irradiation preserves its optimal efficiency in the expansion of human bone marrow mesenchymal stromal cells.
        Transfusion. 2019; 59: 1069-1079
        • Barro L.
        • Su Y.T.
        • Nebie O.
        • Wu Y.W.
        • Huang Y.H.
        • Koh M.B.
        • et al.
        A double-virally-inactivated (Intercept-solvent/detergent) human platelet lysate for in vitro expansion of human mesenchymal stromal cells.
        Transfusion. 2019;
        • Cai K.
        • Groner A.
        • Dichtelmuller H.O.
        • Fabbrizzi F.
        • Flechsig E.
        • Gajardo R.
        • et al.
        Prion removal capacity of plasma protein manufacturing processes: a data collection from PPTA member companies.
        Transfusion. 2013; 53: 1894-1905
        • Seed C.R.
        • Hewitt P.E.
        • Dodd R.Y.
        • Houston F.
        • Cervenakova L.
        Creutzfeldt-Jakob disease and blood transfusion safety.
        Vox Sang. 2018; 113: 220-231