Advertisement

Platelet number and function alterations in preclinical models of sterile inflammation and sepsis patients: implications in the pathophysiology and treatment of inflammation

      Abstract

      Platelets are the blood cells in charge of maintaining the body hemostasis, recognising the damaged vessel wall, and providing the appropriate cellular surface for the coagulation cascade to act locally. Additionally, platelets are active immunomodulators. At the crossroads of hemostasis and inflammation, platelets may exert either beneficial actions or participate in pathological manifestations, and have been associated with the prothrombotic nature of multi-organ failure in systemic inflammation. Platelet number alterations have been reported in septis, and platelet transfusions are given to thrombocytopenic patients. However, the risk to develop transfusion related acute lung injury (TRALI) is higher in sepsis patients. In this manuscript we show that platelets produced during inflammation in preclinical mouse models of sterile inflammation display lower aggregation capacity when stimulating certain receptors, while responses through other receptors remain intact, and we name them “inflammation-conditioned” platelets. In a cohort of sepsis patients, we observed, as previously reported, alterations in the number of platelets and platelet hyperreactivity. Furthermore, we identified a receptor-wise platelet aggregation response disbalance in these patients, although not similar to platelets from preclinical models of sterile inflammation. Interestingly, we generated evidence supporting the notion that platelet aggregation capacity disbalance was partially triggered by plasma components from sepsis patients. Our findings have implications in the indication of platelet transfusions in sepsis patients: Are fully functional platelets suitable for transfusion in sepsis patients? Current Clinical Trials (RESCUE) will answer whether platelet production stimulation with thrombopoietin receptor agonists (TPO-RAs) could be a substitute of platelet transfusions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Machlus K.R.
        • Italiano Jr., J.E.
        The incredible journey: from megakaryocyte development to platelet formation.
        J Cell Biol. 2013; 201: 785-796
        • Jackson S.P.
        • Nesbitt W.S.
        • Kulkarni S.
        Signaling events underlying thrombus formation.
        J Thromb Haemost. 2003; 1: 1602-1612
        • Laurens N.
        • Koolwijk P.
        • de Maat M.P.
        Fibrin structure and wound healing.
        J Thromb Haemost. 2006; 4: 932-939
        • Leslie M.
        Cell biology. Beyond clotting: the powers of platelets.
        Science. 2010; 328: 562-564
        • Feng W.
        • Madajka M.
        • Kerr B.A.
        • Mahabeleshwar G.H.
        • Whiteheart S.W.
        • Byzova T.V.
        A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing.
        Blood. 2011; 117: 3893-3902
        • Gay L.J.
        • Felding-Habermann B.
        Contribution of platelets to tumour metastasis.
        Nat Rev Cancer. 2011; 11: 123-134
        • Jenne C.N.
        • Urrutia R.
        • Platelets Kubes P.
        Bridging hemostasis, inflammation, and immunity.
        Int J Lab Hematol. 2013; 35: 254-261
        • Semple J.W.
        • Italiano Jr., J.E.
        • Freedman J.
        Platelets and the immune continuum.
        Nat Rev Immunol. 2011; 11: 264-274
        • Navarro-Nunez L.
        • Langan S.A.
        • Nash G.B.
        • Watson S.P.
        The physiological and pathophysiological roles of platelet CLEC-2.
        Thromb Haemost. 2013; 109: 991-998
        • Uhrin P.
        • Zaujec J.
        • Breuss J.M.
        • Olcaydu D.
        • Chrenek P.
        • Stockinger H.
        • et al.
        Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation.
        Blood. 2010; 115: 3997-4005
        • Miyazaki H.
        Physiologic role of TPO in thrombopoiesis.
        Stem Cells. 1996; 14: 133-138
        • Martinez-Botia P.
        • Acebes-Huerta A.
        • Seghatchian J.
        • Gutierrez L.
        On the quest for in vitro platelet production by Re-Tailoring the concepts of megakaryocyte differentiation.
        Medicina (Kaunas). 2020; 56
        • Martinez-Botia P.
        • Acebes-Huerta A.
        • Seghatchian J.
        • Gutierrez L.
        In vitro platelet production for transfusion purposes: Where are we now?.
        Transfus Apher Sci. 2020; 59102864
        • de Sauvage F.J.
        • Carver-Moore K.
        • Luoh S.M.
        • Ryan A.
        • Dowd M.
        • Eaton D.L.
        • et al.
        Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin.
        J Exp Med. 1996; 183: 651-656
        • Geddis A.E.
        Congenital amegakaryocytic thrombocytopenia.
        Pediatr Blood Cancer. 2011; 57: 199-203
        • Gurney A.L.
        • Carver-Moore K.
        • de Sauvage F.J.
        • Moore M.W.
        Thrombocytopenia in c-mpl-deficient mice.
        Science. 1994; 265: 1445-1447
        • Shaz B.H.
        • Stowell S.R.
        • Hillyer C.D.
        Transfusion-related acute lung injury: from bedside to bench and back.
        Blood. 2011; 117: 1463-1471
        • Vlaar A.P.
        • Straat M.
        • Juffermans N.P.
        The relation between aged blood products and onset of transfusion-related acute lung injury. A review of pre-clinical data.
        Clin Lab. 2011; 57: 267-272
        • Caudrillier A.
        • Looney M.R.
        Platelet-neutrophil interactions as a target for prevention and treatment of transfusion-related acute lung injury.
        Curr Pharm Des. 2012; 18: 3260-3266
        • Looney M.R.
        • Nguyen J.X.
        • Hu Y.
        • Van Ziffle J.A.
        • Lowell C.A.
        • Matthay M.A.
        Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury.
        J Clin Invest. 2009; 119: 3450-3461
        • Libregts S.F.
        • Gutierrez L.
        • de Bruin A.M.
        • Wensveen F.M.
        • Papadopoulos P.
        • van Ijcken W.
        • et al.
        Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis.
        Blood. 2011; 118: 2578-2588
        • Arens R.
        • Tesselaar K.
        • Baars P.A.
        • van Schijndel G.M.
        • Hendriks J.
        • Pals S.T.
        • et al.
        Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNgamma-mediated B cell depletion.
        Immunity. 2001; 15: 801-812
        • De Cuyper I.M.
        • Meinders M.
        • van de Vijver E.
        • de Korte D.
        • Porcelijn L.
        • de Haas M.
        • et al.
        A novel flow cytometry-based platelet aggregation assay.
        Blood. 2013; 121: e70-80
        • Assinger A.
        • Schrottmaier W.C.
        • Salzmann M.
        • Rayes J.
        Platelets in sepsis: an update on experimental models and clinical data.
        Front Immunol. 2019; 10: 1687
        • Yaguchi A.
        • Lobo F.L.
        • Vincent J.L.
        • Pradier O.
        Platelet function in sepsis.
        J Thromb Haemost. 2004; 2: 2096-2102
        • Woth G.
        • Varga A.
        • Ghosh S.
        • Krupp M.
        • Kiss T.
        • Bogar L.
        • et al.
        Platelet aggregation in severe sepsis.
        J Thromb Thrombolysis. 2011; 31: 6-12
        • Singer M.
        • Deutschman C.S.
        • Seymour C.W.
        • Shankar-Hari M.
        • Annane D.
        • Bauer M.
        • et al.
        The third international consensus definitions for sepsis and septic shock (Sepsis-3).
        JAMA. 2016; 315: 801-810
        • Levi M.
        Platelets in sepsis.
        Hematology. 2005; 10: 129-131
        • Sjovall F.
        • Hansson M.J.
        • Elmer E.
        Platelet mitochondrial function in sepsis.
        Crit Care Med. 2012; 40 (author reply -8)
        • Vincent J.L.
        • Yagushi A.
        • Pradier O.
        Platelet function in sepsis.
        Crit Care Med. 2002; 30: S313-7
        • Greco E.
        • Lupia E.
        • Bosco O.
        • Vizio B.
        • Montrucchio G.
        Platelets and multi-organ failure in sepsis.
        Int J Mol Sci. 2017; 18
        • Guo L.
        • Shen S.
        • Rowley J.W.
        • Tolley N.D.
        • Jia W.
        • Manne B.K.
        • et al.
        Platelet MHC class I mediates CD8+ T-cell suppression during sepsis.
        Blood. 2021; 138: 401-416
        • Lundahl T.H.
        • Petersson J.
        • Fagerberg I.H.
        • Berg S.
        • Lindahl T.L.
        Impaired platelet function correlates with multi-organ dysfunction. A study of patients with sepsis.
        Platelets. 1998; 9: 223-225
        • Rayes J.
        • Watson S.P.
        • Nieswandt B.
        Functional significance of the platelet immune receptors GPVI and CLEC-2.
        J Clin Invest. 2019; 129: 12-23
        • Couldwell G.
        • Machlus K.R.
        Modulation of megakaryopoiesis and platelet production during inflammation.
        Thromb Res. 2019; 179: 114-120
        • Freishtat R.J.
        • Natale J.
        • Benton A.S.
        • Cohen J.
        • Sharron M.
        • Wiles A.A.
        • et al.
        Sepsis alters the megakaryocyte-platelet transcriptional axis resulting in granzyme B-mediated lymphotoxicity.
        Am J Respir Crit Care Med. 2009; 179: 467-473
        • French S.L.
        • Butov K.R.
        • Allaeys I.
        • Canas J.
        • Morad G.
        • Davenport P.
        • et al.
        Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation.
        Blood Adv. 2020; 4: 3011-3023
        • Schwertz H.
        • Rowley J.W.
        • Portier I.
        • Middleton E.A.
        • Tolley N.D.
        • Campbell R.A.
        • et al.
        Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5.
        Autophagy. 2021; : 1-17
        • McElroy M.C.
        • Pittet J.F.
        • Hashimoto S.
        • Allen L.
        • Wiener-Kronish J.P.
        • Dobbs L.G.
        A type I cell-specific protein is a biochemical marker of epithelial injury in a rat model of pneumonia.
        Am J Physiol. 1995; 268: L181-6
        • Martinez-Botia P.
        • Bernardo A.
        • Acebes-Huerta A.
        • Caro A.
        • Leoz B.
        • Martinez-Carballeira D.
        • et al.
        Clinical management of hypertension, inflammation and thrombosis in hospitalized COVID-19 patients: impact on survival and concerns.
        J Clin Med. 2021; : 10
        • Campbell R.A.
        • Hisada Y.
        • Denorme F.
        • Grover S.P.
        • Bouck E.G.
        • Middleton E.A.
        • et al.
        Comparison of the coagulopathies associated with COVID-19 and sepsis.
        Res Pract Thromb Haemost. 2021; 5e12525
        • Habets K.L.
        • Huizinga T.W.
        • Toes R.E.
        Platelets and autoimmunity.
        Eur J Clin Invest. 2013; 43: 746-757