Research Article| Volume 61, ISSUE 6, 103456, December 2022

Expression of biofilm-associated genes in Staphylococcus aureus during storage of platelet concentrates

  • Meshari Alabdullatif
    Correspondence to: Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Uthman Ibn Affan Rd, Riyadh 13317-4233, Saudi Arabia.
    Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
    Search for articles by this author
  • Ahmed Alzahrani
    Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
    Search for articles by this author


      Background and objectives

      In transfusion medicine, the safety of platelet concentrates (PCs) is a major concern on account of contamination, mostly with Staphylococcus species. One of the most common contaminants is Staphylococcus aureus, which forms bacterial biofilms in PCs, posing a safety risk for transfusion patients. In this study, we investigate the contributions to biofilm formation of eno, ebps, and fib genes encoding surface proteins and of genes from the ica operon (icaA and icaD) encoding polysaccharide intercellular adhesin (PIA), along with their expression in bacteria grown in glucose-supplemented trypticase soy broth (TSBg) and PCs.

      Materials and methods

      Two strains of S. aureus (2039 and 2110) captured during routine PC screening were tested for biofilm formation in TSBg and under PC storage conditions, with mRNA collected at five time points and analyzed to determine expression of eno, ebps, fib, icaA, and icaD and their contributions to biofilm formation in both media.


      In TSBg, S. aureus strain 2039 formed weak biofilms while 2110 formed strong. biofilms; however, in PCs, both strains formed strong biofilms. During biofilm formation, expression levels of icaA and icaD in both strains were generally significantly higher in TSBg than PCs. In contrast, expression of eno, ebps, and fib genes tended to be significantly higher under PC storage conditions.


      This study demonstrated that expression of genes involved in biofilm formation can be affected by growth media. Further investigation is needed to understand biofilm formation in the PC milieu and enhance transfusion safety.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. FDA . Fatalities reported to FDA following blood collection and transfusion annual summary for Fiscal year 2018. Cited 2021 Nov 16. Available from 〈〉.

        • Ramirez-Arcos S.
        • Goldman M.
        Bacterial contamination.
        in: Popovsky M.A. Transfusion reactions. 4th ed. (MD). Bethesda, American Association of Blood Banks, 2012: 153-189
      2. Swissmedic. Haemovigilance annual reports 2006–2019. Cited 2021 Aug 22. Available from 〈〉.

      3. Canadian Blood Services. Circular of information for the use of human blood components. Cited 2021 Sep 23. Available from 〈〉.

        • Alabdullatif M.
        • Osman I.E.
        • Alrasheed M.
        • Ramirez-Arcos S.
        • Alyousef M.
        • Althawadi S.
        • et al.
        Evaluation of riboflavin and ultraviolet light treatment against Klebsiella pneumoniae in whole blood-drived platelets: a pilot study.
        Transfusion. 2021; 61: 1562-1569
        • Muller B.
        • Walther-Wenke G.
        • Kalus M.
        • Alt T.
        • Bux J.
        • Zeiler T.
        • et al.
        Routine bacterial screening of platelet concentrates by flow cytometry and its impact on product safety and supply.
        Vox Sang. 2015; 108: 209-218
        • Zhy L.
        • Xu J.
        • Yang X.
        • Shen Z.
        • Wang Y.
        • Zhu F.
        • et al.
        Detection of bacterial contamination of apheresis platelets in a Chines Blood Center.
        Transfus Med. 2009; 19: 357-362
        • Girgis S.
        • Ismail G.
        • Gahgat F.
        • Ali I.
        Rapid detection of bacterial contamination in platelet concentrates, by polymerase chain reaction and DNA sequencing in comparison to conventional automated culture.
        Int J Curr Microbiol Appl Sci. 2014; 3: 38-52
        • Ketter P.M.
        • Kamucheka R.
        • Arulanandam B.
        • Akers K.
        • Cap A.P.
        Platelet enhancement of bacterial growth during room temperature storage: mitigation through refrigeration.
        Transfusion. 2019; 59: 1479-1489
        • Alvarez M.E.
        • Lopez C.
        • Giraldo C.E.
        • Samudio I.
        • Carmona J.U.
        In vitro bactericidal activity of equine platelet concentrates, platelet poor plasma, and plasma against methicillin-resistant Staphylococcus aureus.
        Arch Med Vet. 2011; 43: 155-161
        • Lorenzo D.
        • Monica B.
        • Christian V.
        • Romano C.L.
        • Taschieri S.
        • Fabbro M.D.
        Plasma components and platelet activation are essential for the antimicrobial properties of autologous platelet-rich plasma: an in vitro study.
        PLoS One. 2014; 9e107813
        • Yeaman M.R.
        Platelets: at the nexus of antimicrobial defence.
        Nat Rev Microbiol. 2014; 12: 426-437
        • Tang Y.Q.
        • Yeaman M.R.
        • Selsted M.
        Antimicrobial peptides from human platelets.
        Infect Immun. 2002; 70: 6524-6533
        • Alabdullatif M.
        • Atreya C.D.
        • Ramirez-Arcos S.
        Antimicrobial peptides: an effective approach to prevent bacterial biofilm formation in platelet concentrates.
        Transfusion. 2018; 58: 2013-2021
        • Loza-Correa M.
        • Ayala J.
        • Perelman I.
        • Hubbard K.
        • Kalab M.
        • Yi Q.L.
        • et al.
        Biofilm matrix and cell wall modification during biofilm formation might confer Staphylococcus epidermidis advantages growth in platelets. Abstract 4C-S28-02.
        Vox Sang. 2017; 112: S63-S64
        • Hiltunen A.K.
        • Savijoki K.
        • Nyman T.A.
        • Miettinen I.
        • Ihalainen P.
        • Peltonen J.
        • et al.
        Structural and functional dynamics of Staphylococcus aureus biofilms and biofilm matrix proteins on different clinical materials.
        Microorganisms. 2019; 7: 584
        • Arciola C.R.
        • Campoccia D.
        • Ravaioli S.
        • Montanaro L.
        Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects.
        Front Cell Infect Microbiol. 2015; 5: 7
        • Diemon-Hernandez B.
        • Solorzano-Santos F.
        • Leanos-Miranda B.
        • Peregrino-Bejarano L.
        • Miranda-Novales G.
        Production of icaADBC-encoded polysaccharide intercellular adhesin and therapeutic failure in pediatric patients with staphylococcal device-related infections.
        BMC Infect Dis. 2010; 10: 68
        • Nguyen H.
        • Nguyen T.
        • Otto M.
        The staphylococcal expolysaccharide PIA-biosynthesis and role in biofilm formation, colonization, and infection.
        Comput Struct Biotechnol J. 2020; 18: 3324-3334
        • O’Neill E.
        • Pozzi C.
        • Houston P.
        • Humphreys H.
        • Robinson A.
        • Loughman A.
        • et al.
        A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB.
        J Bacteriol. 2008; 190: 3835-3850
        • Pietro S.
        • Giampiero P.
        • Foster T.J.
        • Geoghegan J.A.
        Protein-based biofilm matrices in Staphylococci.
        Front Cell infect Microbiol. 2014; 4: 171
        • Kot B.
        • Sytykiewicz H.
        • Sprawka I.
        Expression of the biofilm-associated genes in methicillin-resistant Staphylococcus aureus in biofilm and planktonic conditions.
        Int J Mol Sci. 2018; 19: 3487
        • Downer R.
        • Roche F.
        • Park P.W.
        • Mecham R.P.
        • Foster T.J.
        The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a well-associated protein.
        J Biol Chem. 2002; 277: 243-250
        • Tristan A.
        • Ying L.
        • Bes M.
        • Etienne J.
        • Vandenesch F.
        • Lina G.
        Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections.
        J Clin Microbiol. 2003; 41: 4465-4467
        • Hartford O.M.
        • Wann E.R.
        • Hook M.
        • Foster T.J.
        Identification of residues in the Staphylococcus aureus fibrinogen-binding MSCRAMM clumping factor A (ClFA) that are important for ligand binding.
        J Biol Chem. 2001; 276: 2466-2473
        • Ali H.
        • Greco-Stewart V.S.
        • Jacobs M.R.
        • Yomtovian R.A.
        • Rood I.G.
        • Korte D.D.
        • et al.
        Characterization of the growth dynamics and biofilm formation of Staphylococcus epidermidis strains isolated from contaminated platelet units.
        J Med Microbiol. 2014; 63: 844-891
        • Hodgson S.D.
        • Greco-Stewart V.
        • Jimenez C.S.
        • Sifri C.
        • Brassinga A.K.
        • Ramirez-Arcos S.
        Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations.
        Transfusion. 2014; 54: 461-470
        • Alabdullatif M.
        • Ramirez-Arcos S.
        Biofilm-associated accumulation-associated (Aap): A contributing factor to the predominant growth of Staphylococcus epidermidis in platelet concentrates.
        Vox Sang. 2019; 114: 28-37
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real time quantitative PCR and the 2-∆∆Ct method.
        Methods. 2001; 25: 402-408
        • Hassan A.
        • Usman J.
        • Kaleem F.
        • Moair M.
        • Khalid A.
        • Iqbal M.
        Evaluation of different detection methods of biofilm formation in the clinical isolates.
        Braz J Infect Dis. 2011; 15: 305-311
        • Carneiro C.R.
        • Postol E.
        • Nomizo R.
        • Reis L.F.
        • Brentani R.R.
        Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus.
        Microbes Infect. 2004; 6: 604-608
        • Tormo M.A.
        • Knecht E.
        • Gotz F.
        • Lasa I.
        • Penades J.R.
        Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?.
        Microbiology. 2005; 151: 2465-2475
        • Hamzeh-Cognasse H.
        • Damien P.
        • Chabert A.
        • Pozzetto B.
        • Cognasse F.
        • Garraud O.
        Platelets and infections – complex interactions with bacteria.
        Front Immunol. 2015; 6: 82
        • Atshan S.S.
        • Shamsudin M.N.
        • Karunanidhi A.
        • Belkum A.V.
        • Lung L.T.
        • Sekawi Z.
        • et al.
        Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA).
        Infect Genet Evol. 2013; 18: 106-112
        • Levy J.H.
        • Neal M.D.
        • Herman J.H.
        Bacterial contamination of platelets for transfusion: strategies for prevention.
        Crit Care. 2018; 22: 271
        • Hayashi T.
        • Oguma K.
        • Fujimura Y.
        • Furuta R.A.
        • Tanaka M.
        • Masaki M.
        • et al.
        UV light-emitting diode (UV-LED) at 265 nm as a potential light source for disinfection human platelet concetrates.
        PLoS One. 2021; 16e0251650
        • Abe H.
        • Endo K.
        • Shiba M.
        • Niibe Y.
        • Miyata S.
        • Satake M.
        Flow path system of ultraviolet C irradiation from xenon flash to reduce bacteria survival in platelet products containing a platelet additive solution.
        Transfusion. 2020; 60: 1050-1059
        • Yonemura S.
        • Doane S.
        • Keil S.
        • Goodrich R.
        • Pidcoke H.
        • Cardoso M.
        Improving the safety of whole blood-derived transfusion products with a riboflavin-based pathogen reduction technology.
        Blood Transfus. 2017; 15: 357-364
        • Kwon S.
        • Kim I.
        • Bae J.
        • Kang J.
        • Cho Y.
        • Cho N.
        • et al.
        Pathogen inactivation efficacy of Mirasol PRT System and Intercept Blood System for non-leucoreduced platelet-rich plasma-derived platelets suspended in plasma.
        Vox Sang. 2014; 107: 254-260