Advertisement

Investigating the production of platelet lysate obtained from low volume Cord Blood Units: Focus on growth factor content and regenerative potential

      Abstract

      Background

      The regenerative potential of platelet lysate (PL) and platelet gel (PG) is mediated by the release of platelets (PLTs) growth factors. The aim of this study was the evaluation of the PL production utilizing low volume single Cord Blood Units (CBUs) and the comparison of the biomolecule content between PLs obtained from intermediate and high volume CBUs.

      Methods

      CBUs (n = 90) with volumes greater than 50 ml and initial platelet count > 150 × 109/L were used. CBUs were classified into the following groups: group A (50–80 ml), group B (81–110 ml) and group C (111–150 ml). The CBUs were centrifuged twice for the production of the platelet concentrate (PC), which was stored at − 80 °C for at least 48 h. Then, rapidly thawed and the biomolecule content was determined using commercial ELISA kits. The regenerative potential of PLs was evaluated using the scratch wound and in vitro angiogenesis assay.

      Results

      CBPL was produced from low volume single CBUs and contained 3.4 ± 0.3 ×109 PLTs. PL obtained from intermediate and high volume CBUs consisted of 10.2 ± 0.3 and 16.1 ± 0.4 × 109 PLTs. All PL groups were characterized by high biomolecule content. Gap closure was observed within 72 h after the wound assay initiation and the capillary tubes were formed in all study groups.

      Conclusion

      This study provided significant evidence regarding the utilization of the low volume CBUs for the production of CB derivatives, thus can serve as healing mediators in regenerative medicine approaches.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alves R.
        • Grimalt R.
        A review of platelet-rich plasma: history, biology, mechanism of action, and classification.
        Skin Appendage Disord. 2018; 4: 18-24https://doi.org/10.1159/000477353
        • Lang S.
        • Loibl M.
        • Herrmann M.
        Platelet-rich plasma in tissue engineering: hype and hope.
        Eur Surg Res. 2018; 59: 265-275https://doi.org/10.1159/000492415
        • Santos SCNDS,Sigurjonsson ÓE, Custódio CA, Mano JFCDL
        Derivatives for tissue engineering and regenerative medicine therapies.
        Tissue Eng Part B Rev. 2018; 24: 454-462https://doi.org/10.1089/ten.TEB.2018.0008
        • Bielecki T.
        • Dohan Ehrenfest D.M.
        Platelet-rich plasma (PRP) and Platelet-Rich Fibrin (PRF): surgical adjuvants, preparations for in situ regenerative medicine and tools for tissue engineering.
        Curr Pharm Biotechnol. 2012; 13: 1121-1130https://doi.org/10.2174/138920112800624292
        • Meftahpour V.
        • Malekghasemi S.
        • Baghbanzadeh A.
        • Aghebati-Maleki A.
        • Pourakbari R.
        • Fotouhi A.
        • et al.
        Platelet lysate: a promising candidate in regenerative medicine.
        Regen Med. 2021; 16: 71-85https://doi.org/10.2217/rme-2020-0065
        • Henschler R.
        • Gabriel C.
        • Schallmoser K.
        • Burnouf T.
        • Koh M.B.C.
        Human platelet lysate current standards and future developments.
        Transfusion. 2019; 59: 1407-1413https://doi.org/10.1111/trf.15174
        • Klatte-Schulz F.
        • Schmidt T.
        • Uckert M.
        • Scheffler S.
        • Kalus U.
        • Rojewski M.
        • et al.
        Comparative analysis of different platelet lysates and platelet rich preparations to stimulate tendon cell biology: an in vitro study.
        Int J Mol Sci. 2018; 19: 212https://doi.org/10.3390/ijms19010212
        • Pötter N.
        • Westbrock F.
        • Grad S.
        • Alini M.
        • Stoddart M.J.
        • Schmal H.
        • et al.
        Evaluation of the influence of platelet-rich plasma (PRP), platelet lysate (PL) and mechanical loading on chondrogenesis in vitro.
        Sci Rep. 2021; 11: 20188https://doi.org/10.1038/s41598-021-99614-0
        • Görmeli G.
        • Görmeli C.A.
        • Ataoglu B.
        • Çolak C.
        • Aslantürk O.
        • Ertem K.
        Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 958-965https://doi.org/10.1007/s00167-015-3705-6
        • Kanchanatawan W.
        • Arirachakaran A.
        • Chaijenkij K.
        • Prasathaporn N.
        • Boonard M.
        • Piyapittayanun P.
        • et al.
        Short-term outcomes of platelet-rich plasma injection for treatment of osteoarthritis of the knee.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1665-1677https://doi.org/10.1007/s00167-015-3784-4
        • Cavallo C.
        • Roffi A.
        • Grigolo B.
        • Mariani E.
        • Pratelli L.
        • et al.
        Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules.
        Biomed Res Int. 2016; 2016: 6591717https://doi.org/10.1155/2016/6591717
        • Roussy Y.
        • Bertrand Duchesne M.P.
        • Gagnon G.
        Activation of human platelet-rich plasmas: effect on growth factors release, cell division and in vivo bone formation.
        Clin Oral Implants Res. 2007; 18: 639-648https://doi.org/10.1111/j.1600-0501.2007.01385.x
        • Toyoda T.
        • Isobe K.
        • Tsujino T.
        • Koyata Y.
        • Ohyagi F.
        • Watanabe T.
        • et al.
        Direct activation of platelets by addition of CaCl2 leads coagulation of platelet-rich plasma.
        Int J Implant Dent. 2018; 4: 23https://doi.org/10.1186/s40729-018-0134-6
        • Bernardi M.
        • Agostini F.
        • Chieregato K.
        • Amati E.
        • Durante C.
        • Rassu M.
        • et al.
        The production method affects the efficacy of platelet derivatives to expand mesenchymal stromal cells in vitro.
        J Transl Med. 2017; 15: 90https://doi.org/10.1186/s12967-017-1185-9
        • Samarkanova D.
        • Cox S.
        • Hernandez D.
        • Rodriguez L.
        • Casaroli-Marano R.P.
        • Madrigal A.
        • et al.
        Cord blood platelet rich plasma derivatives for clinical applications in non-transfusion medicine.
        Front Immunol. 2020; 11: 942https://doi.org/10.3389/fimmu.2020.00942
        • Ballen K.K.
        • Gluckman E.
        • Broxmeyer H.E.
        Umbilical cord blood transplantation: the first 25 years and beyond.
        Blood. 2013; 122: 491-498https://doi.org/10.1182/blood-2013-02-453175
        • Bart T.
        • Boo M.
        • Balabanova S.
        • Fischer Y.
        • Nicoloso G.
        • Foeken L.
        • et al.
        Impact of selection of cord blood units from the United States and swiss registries on the cost of banking operations.
        Transfus Med Hemother. 2013; 40: 14-20https://doi.org/10.1159/000345690
        • Naing M.W.
        • Gibson D.A.
        • Hourd P.
        • Gomez S.G.
        • Horton R.B.
        • Segal J.
        • et al.
        Improving umbilical cord blood processing to increase total nucleated cell count yield and reduce cord input wastage by managing the consequences of input variation.
        Cytotherapy. 2015; 17: 58-67https://doi.org/10.1016/j.jcyt.2014.09.003
        • Tadini G.
        • Guez S.
        • Pezzani L.
        • Marconi M.
        • Greppi N.
        • Manzoni F.
        • et al.
        Preliminary evaluation of cord blood platelet gel for the treatment of skin lesions in children with dystrophic epidermolysis bullosa.
        Blood Transfus. 2015; 13: 153-158https://doi.org/10.2450/2014.0160-14
        • Tadini G.
        • Pezzani L.
        • Ghirardello S.
        • Rebulla P.
        • Esposito S.
        • Mosca F.
        Cord blood platelet gel treatment of dystrophic recessive epidermolysis bullosa.
        BMJ Case Rep. 2015; 2015 (bcr2014207364)https://doi.org/10.1136/bcr-2014-207364
        • Jafar H.
        • Hasan M.
        • Al-Hattab D.
        • Saleh M.
        • Ameereh L.A.
        • Khraisha S.
        • et al.
        Platelet lysate promotes the healing of long-standing diabetic foot ulcers: a report of two cases and in vitro study.
        Heliyon. 2020; 6e03929https://doi.org/10.1016/j.heliyon.2020.e03929
        • Villela D.L.
        • Santos V.L.
        Evidence on the use of platelet-rich plasma for diabetic ulcer: a systematic review.
        Growth Factors. 2010; 28: 111-116https://doi.org/10.3109/08977190903468185
        • Guiotto M.
        • Raffoul W.
        • Hart A.M.
        • Riehle M.O.
        • di Summa P.G.
        Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review.
        J Transl Med. 2020; 18: 351https://doi.org/10.1186/s12967-020-02489-4
        • Rebulla P.
        • Pupella S.
        • Santodirocco M.
        • Greppi N.
        • Villanova I.
        • Buzzi M.
        • et al.
        Italian Cord Blood Platelet Gel Study Group (see Appendix 1). Multicentre standardisation of a clinical grade procedure for the preparation of allogeneic platelet concentrates from umbilical cord blood.
        Blood Transfus. 2016; 14: 73-79https://doi.org/10.2450/2015.0122-15
        • Mallis P.
        • Gontika I.
        • Dimou Z.
        • Panagouli E.
        • Zoidakis J.
        • Makridakis M.
        • et al.
        Short term results of fibrin gel obtained from cord blood units: a preliminary in vitro study.
        Bioengineering. 2019; 6: 66https://doi.org/10.3390/bioengineering6030066
      1. Mallis P, Michalopoulos E, Panagouli E, Dimou Z, Sarri EF, Georgiou E, et al. Selection Criteria of Cord Blood Units for Platelet Gel Production: Proposed Directions from Hellenic Cord Blood Bank. Comment on Mallis et al. Short Term Results of Fibrin Gel Obtained from Cord Blood Units: A Preliminary in Vitro Study. Bioengineering 2019, 6, 66. Bioengineering (Basel). 2021;8:53. doi: 10.3390/bioengineering8050053.

        • Warkentin P.I.
        Foundation for the accreditation of cellular therapy. Voluntary accreditation of cellular therapies: foundation for the accreditation of cellular therapy (FACT).
        Cytotherapy. 2003; 5: 299-305https://doi.org/10.1080/14653240310002298
        • Mallis P.
        • Alevrogianni V.
        • Sarri P.
        • Velentzas A.D.
        • Stavropoulos-Giokas C.
        • Michalopoulos E.
        Effect of cord blood platelet gel on wound healing capacity of human mesenchymal stromal cells.
        Transfus Apher Sci. 2020; 59102734https://doi.org/10.1016/j.transci.2020.102734
        • Christou I.
        • Mallis P.
        • Michalopoulos E.
        • Chatzistamatiou T.
        • Mermelekas G.
        • Zoidakis J.
        • et al.
        Evaluation of peripheral blood and cord blood platelet lysates in isolation and expansion of multipotent mesenchymal stromal cells.
        Bioengineering. 2018; 5: 19https://doi.org/10.3390/bioengineering5010019
        • Shih D.T.
        • Burnouf T.
        Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion.
        N Biotechnol. 2015; 32: 199-211https://doi.org/10.1016/j.nbt.2014.06.001
        • Valentini C.G.
        • Nuzzolo E.R.
        • Bianchi M.
        • Orlando N.
        • Iachininoto M.G.
        • Pinci P.
        • et al.
        Cord blood platelet lysate: in vitro evaluation to support the use in regenerative medicine.
        Mediterr J Hematol Infect Dis. 2019; 11e2019021https://doi.org/10.4084/MJHID.2019.021
        • Parazzi V.
        • Lazzari L.
        • Rebulla P.
        Platelet gel from cord blood: a novel tool for tissue engineering.
        Platelets. 2010; 21: 549-554https://doi.org/10.3109/09537104.2010.514626
        • Cañas-Arboleda M.
        • Beltrán K.
        • Medina C.
        • Camacho B.
        • Salguero G.
        Human platelet lysate supports efficient expansion and stability of wharton's jelly mesenchymal stromal cells via active uptake and release of soluble regenerative factors.
        Int J Mol Sci. 2020; 21: 6284https://doi.org/10.3390/ijms21176284
        • Zamani M.
        • Yaghoubi Y.
        • Movassaghpour A.
        • Shakouri K.
        • Mehdizadeh A.
        • Pishgahi A.
        • et al.
        Novel therapeutic approaches in utilizing platelet lysate in regenerative medicine: are we ready for clinical use?.
        J Cell Physiol. 2019; 234: 17172-17186https://doi.org/10.1002/jcp.28496
        • Galiano R.D.
        • Tepper O.M.
        • Pelo C.R.
        • Bhatt K.A.
        • Callaghan M.
        • Bastidas N.
        • et al.
        Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells.
        Am J Pathol. 2004; 164: 1935-1947https://doi.org/10.1016/S0002-9440(10)63754-6
        • Bao P.
        • Kodra A.
        • Tomic-Canic M.
        • Golinko M.S.
        • Ehrlich H.P.
        • Brem H.
        The role of vascular endothelial growth factor in wound healing.
        J Surg Res. 2009; 153: 347-358https://doi.org/10.1016/j.jss.2008.04.023
        • Fortunato T.M.
        • Beltrami C.
        • Emanueli C.
        • De Bank P.A.
        • Pula G.
        Platelet lysate gel and endothelial progenitors stimulate microvascular network formation in vitro: tissue engineering implications.
        Sci Rep. 2016; 6: 25326https://doi.org/10.1038/srep25326
        • Ahmad Z.
        • Howard D.
        • Brooks R.A.
        • Wardale J.
        • Henson F.M.
        • Getgood A.
        • et al.
        The role of platelet rich plasma in musculoskeletal science.
        JRSM Short Rep. 2012; 3: 40https://doi.org/10.1258/shorts.2011.011148
        • Mallis P.
        • Michalopoulos E.
        • Chatzistamatiou T.
        • Stavropoulos-Giokas C.
        Mesenchymal stromal cells as potential immunomodulatory players in severe acute respiratory distress syndrome induced by SARS-CoV-2 infection.
        World J Stem Cells. 2020; 12: 731-751https://doi.org/10.4252/wjsc.v12.i8.731
        • Kocazeybek B.
        • Arabaci U.
        • Akdur H.
        • Sezgiç M.
        • Erentürk S.
        Prospective evaluation of platelets prepared by single and random methods during 5 days of storage: aspects related to quality and quantity.
        Transfus Apher Sci. 2002; 26: 29-34https://doi.org/10.1016/s1473-0502(01)00141-0
        • Tancharoen W.
        • Aungsuchawan S.
        • Pothacharoen P.
        • Bumroongkit K.
        • Puaninta C.
        • Pangjaidee N.
        • et al.
        Human platelet lysate as an alternative to fetal bovine serum for culture and endothelial differentiation of human amniotic fluid mesenchymal stem cells.
        Mol Med Rep. 2019; 19: 5123-5132https://doi.org/10.3892/mmr.2019.10182