Advertisement

Transfusion support for patients with sickle cell disease

      Highlights

      • Transfusion in patients with sickle cell disease increases tissue oxygenation and decreases the amount of hemoglobin S.
      • Transfusion approaches for patients with sickle cell disease when clinically indicated should be individualized.
      • Transfusions for patients with sickle cell disease have an important therapeutic role in both acute and non-acute settings.

      Abstract

      Red blood cell (RBC) transfusion is an essential treatment for many patients with sickle cell disease (SCD), whose RBCs express hemoglobin S (HbS), a mutated form of hemoglobin A (HbA). Transfusion goals include increasing blood oxygen carrying capacity and decreasing the relative amount of HbS to HbA to mitigate vaso-occlusion in small blood vessels. In situations where correction of severe anemia and reduction in HbS may be achieved without removal of RBCs, simple transfusion may be utilized. Partial manual RBC exchange, which removes blood containing HbS by phlebotomy and replaces with donor blood transfusion sequentially allows for larger changes in the ratio of HbS to HbA when compared to simple transfusion. Automated RBC exchange by apheresis is useful in situations where a rapid and drastic HbS reduction is indicated. Vascular access is an important consideration for transfusion. Although peripheral access may be sufficient, central venous catheters and implantable venous access devices may be necessary for adequate access over time. Blood bank considerations include adequate RBC antigen matching to mitigate the risk of RBC alloimmunization, of which patients with SCD are at risk of developing. Transfusion may be utilized in efforts to intervene in the evolution of potentially life-threatening complications of SCD such as acute stroke, severe acute anemia and acute chest syndrome. Transfusion is also useful in several non-acute settings, such as stroke prevention, pregnancy, pre-surgery, and transfusion support for curative therapies. Individualized treatment plans are an essential component of patient care. Continuous evaluation of clinical indications and evolution of guidelines will continue to optimize care for patients with SCD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Piel F.B.
        • Steinberg M.H.
        • Rees D.C.
        Sickle cell disease.
        N Engl J Med. 2017; 376 (1561-73)
        • Hassell K.L.
        Population estimates of sickle cell disease in the U.S.
        Am J Prev Med. 2010; 38: S512-S521
      1. Lin K., Barton M.B. Screening for Hemoglobinopathies in Newborns: Reaffirmation Update for the U.S. Preventive Services Task Force. In: (US) AfHRaQ, editor. Rockville (MD)2007.

        • Davis B.A.
        • Allard S.
        • Qureshi A.
        • Porter J.B.
        • Pancham S.
        • Win N.
        • et al.
        Guidelines on red cell transfusion in sickle cell disease Part II: indications for transfusion.
        Br J Haematol. 2017; 176: 192-209
        • Linder G.E.
        • Chou S.T.
        Red cell transfusion and alloimmunization in sickle cell disease.
        Haematologica. 2021; 106 (1805-15)
        • Davis B.A.
        • Allard S.
        • Qureshi A.
        • Porter J.B.
        • Pancham S.
        • Win N.
        • et al.
        Guidelines on red cell transfusion in sickle cell disease. Part I: principles and laboratory aspects.
        Br J Haematol. 2017; 176 (179-91)
        • Chou S.T.
        • Alsawas M.
        • Fasano R.M.
        • Field J.J.
        • Hendrickson J.E.
        • Howard J.
        • et al.
        American society of hematology 2020 guidelines for sickle cell disease: transfusion support.
        Blood Adv. 2020; 4 (327-55)
        • Stussi G.
        • Buser A.
        • Holbro A.
        Red blood cells: exchange, transfuse, or deplete.
        Transfus Med Hemother. 2019; 46 (407-16)
        • Koehl B.
        • Sommet J.
        • Holvoet L.
        • Abdoul H.
        • Boizeau P.
        • Ithier G.
        • et al.
        Comparison of automated erythrocytapheresis versus manual exchange transfusion to treat cerebral macrovasculopathy in sickle cell anemia.
        Transfusion. 2016; 56: 1121-1128
        • Kuo K.H.
        • Ward R.
        • Kaya B.
        • Howard J.
        • Telfer P.
        A comparison of chronic manual and automated red blood cell exchange transfusion in sickle cell disease patients.
        Br J Haematol. 2015; 170: 425-428
        • Padmanabhan A.
        • Connelly-Smith L.
        • Aqui N.
        • Balogun R.A.
        • Klingel R.
        • Meyer E.
        • et al.
        Guidelines on the use of therapeutic apheresis in clinical practice - evidence-based approach from the writing committee of the American Society for apheresis: the eighth special issue.
        J Clin Apher. 2019; 34: 171-354
        • Rankin A.
        • Darbari D.
        • Campbell A.
        • Webb J.
        • Mo Y.D.
        • Jacquot C.
        • et al.
        Screening for new red blood cell alloantibodies after transfusion in patients with sickle cell disease.
        Transfusion. 2021; 61 (2255-64)
        • Venkateswaran L.
        • Teruya J.
        • Bustillos C.
        • Mahoney Jr., D.
        • Mueller B.U.
        Red cell exchange does not appear to increase the rate of allo- and auto-immunization in chronically transfused children with sickle cell disease.
        Pedia Blood Cancer. 2011; 57: 294-296
        • Wahl S.K.
        • Garcia A.
        • Hagar W.
        • Gildengorin G.
        • Quirolo K.
        • Vichinsky E.
        Lower alloimmunization rates in pediatric sickle cell patients on chronic erythrocytapheresis compared to chronic simple transfusions.
        Transfusion. 2012; 52: 2671-2676
        • Tsitsikas D.A.
        • Sirigireddy B.
        • Nzouakou R.
        • Calvey A.
        • Quinn J.
        • Collins J.
        • et al.
        Safety, tolerability, and outcomes of regular automated red cell exchange transfusion in the management of sickle cell disease.
        J Clin Apher. 2016; 31 (545-50)
        • Tsitsikas D.A.
        • Badle S.
        • Hall R.
        • Meenan J.
        • Bello-Sanyaolu O.
        • Orebayo F.
        • et al.
        Automated red cell exchange in the management of sickle cell disease.
        J Clin Med. 2021; : 10
        • Tsitsikas D.A.
        • Ekong A.
        • Berg L.
        • Hartzenberg J.
        • Sirigireddy B.
        • Lewis N.
        • et al.
        A 5-year cost analysis of automated red cell exchange transfusion for the management of recurrent painful crises in adult patients with sickle cell disease.
        Transfus Apher Sci. 2017; 56: 466-469
        • Ziemba Y.
        • Xu C.
        • Fomani K.M.
        • Nandi V.
        • Yuan T.
        • Rehmani S.
        • et al.
        Safety and benefits of automated red cell depletion-exchange compared to standard exchange in patients with sickle cell disease undergoing chronic transfusion.
        Transfusion. 2021; 61 (526-36)
        • Karafin M.S.
        • Hendrickson J.E.
        • Kim H.C.
        • Kuliya-Gwarzo A.
        • Pagano M.B.
        • Perumbeti A.
        • et al.
        Red cell exchange for patients with sickle cell disease: an international survey of current practices.
        Transfusion. 2020; 60 (1424-33)
        • Kelly S.
        • Quirolo K.
        • Marsh A.
        • Neumayr L.
        • Garcia A.
        • Custer B.
        Erythrocytapheresis for chronic transfusion therapy in sickle cell disease: survey of current practices and review of the literature.
        Transfusion. 2016; 56 (2877-88)
        • Otrock Z.K.
        • Thibodeaux S.R.
        • Jackups Jr., R.
        Vascular access for red blood cell exchange.
        Transfusion. 2018; 58 (569-79)
        • Tanhehco Y.C.
        • Zantek N.D.
        • Alsammak M.
        • Chhibber V.
        • Li Y.
        • Becker J.
        • et al.
        Vascular access practices for therapeutic apheresis: results of a survey.
        J Clin Apher. 2019; 34: 571-578
      2. 510(k) Summary: K163001. PowerFlow™ Implantable Apheresis IV Port with 9.6 Fr. ChronoFlex™ Catheter. Food and Drug Administration. In: Services DoHaH, editor.2017.
        • Lawicki S.
        • Craig-Owens L.
        • Bream Jr., P.R.
        • Eichbaum Q.
        Indwelling ports for prophylactic RBC exchanges in sickle cell patients: comparison of bard and vortex ports.
        J Clin Apher. 2018; 33 (666-70)
        • Shrestha A.
        • Jawa Z.
        • Koch K.L.
        • Rankin A.B.
        • Xiang Q.
        • Padmanabhan A.
        • et al.
        Use of a dual lumen port for automated red cell exchange in adults with sickle cell disease.
        J Clin Apher. 2015; 30: 353-358
        • Su L.
        • Nizzi F.
        • Jamshidi R.
        • Gomez E.
        • Perumbeti A.
        • Mirea L.
        • et al.
        Use of dual lumen ports for red blood cell exchange: a comparison of adults and children with sickle cell disease.
        J Clin Apher. 2020; 35: 351-357
        • Gray K.L.
        • Steidley I.G.
        • Benson H.L.
        • Pearce C.L.
        • Bachman A.M.
        • Adamski J.
        Implementation and 2-year outcomes of the first FDA-approved implantable apheresis vascular access device.
        Transfusion. 2019; 59: 3461-3467
        • Williams 3rd, L.A.
        • Arnesen C.
        • Gunn C.
        • Boshell M.N.
        • Pham H.P.
        • Guillory B.
        • et al.
        New subcutaneous PowerFlow port results in cost and time-savings in a busy outpatient apheresis clinic.
        J Clin Apher. 2019; 34: 482-486
        • Garrity D.
        • Graves M.
        • Linden St, J.
        • Pierre P.
        • Ducharme P.
        • Zhao Y.
        • et al.
        Performance characteristics of the PowerFlow apheresis port: Early experience.
        J Clin Apher. 2019; 34: 661-665
        • Gill J.C.
        • Oakley D.J.
        • Onwuemene O.A.
        Strategies to aid identification of apheresis powerflow ports: a case report.
        J Emerg Nurs. 2021; 47: 21-27
        • Delville M.
        • Manceau S.
        • Ait Abdallah N.
        • Stolba J.
        • Awad S.
        • Damy T.
        • et al.
        Arterio-venous fistula for automated red blood cells exchange in patients with sickle cell disease: Complications and outcomes.
        Am J Hematol. 2017; 92 (136-40)
        • Tormey C.A.
        • Hendrickson J.E.
        Transfusion-related red blood cell alloantibodies: induction and consequences.
        Blood. 2019; 133 (1821-30)
        • Oteng-Ntim E.
        • Pavord S.
        • Howard R.
        • Robinson S.
        • Oakley L.
        • Mackillop L.
        • et al.
        Management of sickle cell disease in pregnancy. A British Society for Haematology Guideline.
        Br J Haematol. 2021; 194 (980-95)
        • DeBaun M.R.
        • Jordan L.C.
        • King A.A.
        • Schatz J.
        • Vichinsky E.
        • Fox C.K.
        • et al.
        American Society of Hematology 2020 guidelines for sickle cell disease: prevention, diagnosis, and treatment of cerebrovascular disease in children and adults.
        Blood Adv. 2020; 4 (1554-88)
        • Zaidi G.Z.
        • Rosentsveyg J.A.
        • Fomani K.F.
        • Louie J.P.
        • Koenig S.J.
        Reversal of severe multiorgan failure associated with sickle cell crisis using plasma exchange: a case series.
        J Intensive Care Med. 2020; 35: 140-148
        • Minniti C.P.
        • Zaidi A.U.
        • Nouraie M.
        • Manwani D.
        • Crouch G.D.
        • Crouch A.S.
        • et al.
        Clinical predictors of poor outcomes in patients with sickle cell disease and COVID-19 infection.
        Blood Adv. 2021; 5 (207-15)
        • Oteng-Ntim E.
        • Meeks D.
        • Seed P.T.
        • Webster L.
        • Howard J.
        • Doyle P.
        • et al.
        Adverse maternal and perinatal outcomes in pregnant women with sickle cell disease: systematic review and meta-analysis.
        Blood. 2015; 125: 3316-3325
        • Oyedeji C.I.
        • Welsby I.J.
        Optimizing management of sickle cell disease in patients undergoing surgery.
        Hematology. 2021; 2021 (405-10)
        • Brandow A.M.
        • Carroll C.P.
        • Creary S.
        • Edwards-Elliott R.
        • Glassberg J.
        • Hurley R.W.
        • et al.
        American Society of Hematology 2020 guidelines for sickle cell disease: management of acute and chronic pain.
        Blood Adv. 2020; 4 (2656-701)
        • Kanter J.
        • Liem R.I.
        • Bernaudin F.
        • Bolanos-Meade J.
        • Fitzhugh C.D.
        • Hankins J.S.
        • et al.
        American society of hematology 2021 guidelines for sickle cell disease: stem cell transplantation.
        Blood Adv. 2021; 5 (3668-89)
        • Kanter J.
        • Walters M.C.
        • Krishnamurti L.
        • Mapara M.Y.
        • Kwiatkowski J.L.
        • Rifkin-Zenenberg S.
        • et al.
        Biologic and clinical efficacy of LentiGlobin for sickle cell disease.
        N Engl J Med. 2022; 386 (617-28)
        • Justus D.G.
        • Manis J.P.
        Parameters affecting successful stem cell collections for genetic therapies in sickle cell disease.
        Transfus Apher Sci. 2021; 60103059