Advertisement
Review Article|Articles in Press, 103639

Cold stored platelets – Increasing understanding and acceptance

Published:January 04, 2023DOI:https://doi.org/10.1016/j.transci.2023.103639

      Abstract

      Platelet transfusions decreased the risk of morbidity and mortality secondary to thrombocytopenia. This therapy not only ameliorates platelet loss in bleeding patients,but also those with acquired dysfunction of platelets. The current standard of practice worldwide is to provide room temperature platelets (RTPs); however, there are many disadvantages to the use of RTPs such that alternative approaches have been explored. One potential approach is the integration and use of cold stored platelets (CSP), which are platelets stored at 1–6 °C, in clinical settings. CSP research studies show equivalent hemostasis and platelet dysfunction restoration compared to RTPs. In addition, publications have demonstrated advantages of CSP such as reduced bacterial contamination and wastage. Despite its benefits, the production of CSP by blood centers (BCs) and uptake and use of CSP by hospitals has remained relatively low. This review highlights the rationale for CSP production and strategies for overcoming the implementation challenges faced by BCs based on a literature review.Experiences of Consortium for Blood Availability members to integrate CSP in their BCs and clinical practices by providing variance applications are reviewed in this paper. Also, demonstrated in this manuscript are the current indications and opportunities for CSP utilization by healthcare providers.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mack J.P.
        • Miles J.
        • Stolla M.
        Cold-stored platelets: review of studies in humans.
        Transfus Med Rev. 2020; 34: 221-226
        • Acker J.
        • Razatos A.
        Whole blood and apheresis collection of blood components intended for transfusion.
        in: Cohn C. Technical Manual. Bethesda, MD: AABB Press, 2020: 141-172 (page)
        • Nair P.M.
        • Pidcoke H.F.
        • Cap A.P.
        • Ramasubramanian A.K.
        Effect of cold storage on shear-induced platelet aggregation and clot strength.
        J Trauma Acute Care Surg. 2014; 77: S88-S93
        • Reddoch-Cardenas K.M.
        • Bynum J.A.
        • Meledeo M.A.
        • Nair P.M.
        • Wu X.
        • Darlington D.N.
        • et al.
        Cold-stored platelets: a product with function optimized for hemorrhage control.
        Transfus Apher Sci. 2019; 58: 16-22
        • Waters L.
        • Cameron M.
        • Padula M.P.
        • Marks D.C.
        • Johnson L.
        Refrigeration, cryopreservation and pathogen inactivation: an updated perspective on platelet storage conditions.
        Vox Sang. 2018; 113: 317-328
      1. Exceptions and Alternative Procedures Approved Under 21 CFR 640.120(a) [Internet]. FDA CBER2022 [cited 2022 Sep 26];Available from: https://www.fda.gov/vaccines-blood-biologics/regulation-blood-supply/exceptions-and-alternative-procedures-approved-under-21-cfr-640120.

        • Zhao H.
        • Devine D. v
        The missing pieces to the cold-stored platelet puzzle.
        Int J Mol Sci. 2022; 23
        • Josefsson E.C.
        • Gebhard H.H.
        • Stossel T.P.
        • Hartwig J.H.
        • Hoffmeister K.M.
        The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets.
        J Biol Chem. 2005; 280: 18025-18032
        • Badlou B.A.
        • Spierenburg G.
        • Ulrichts H.
        • Deckmyn H.
        • Smid W.M.
        • Akkerman J.W.N.
        Role of glycoprotein Ib? in phagocytosis of platelets by macrophages.
        Transfusion. 2006; 46: 2090-2099
        • Rumjantseva V.
        • Grewal P.K.
        • Wandall H.H.
        • Josefsson E.C.
        • Sørensen A.L.
        • Larson G.
        • et al.
        Dual roles for hepatic lectin receptors in the clearance of chilled platelets.
        Nat Med. 2009; 15: 1273-1280
        • Wandall H.H.
        • Hoffmeister K.M.
        • Sørensen A.L.
        • Rumjantseva V.
        • Clausen H.
        • Hartwig J.H.
        • et al.
        Galactosylation does not prevent the rapid clearance of long-term, 4°C-stored platelets.
        Blood. 2008; 111: 3249-3256
        • Zucker M.B.
        • Borelli J.
        Reversible alterations in platelet morphology produced by anticoagulants and by cold.
        Blood. 1954; 9: 602-608
        • White J.G.
        • Krivit W.
        An ultrastructural basis for the shape changes induced in platelets by chilling.
        Blood. 1967; 30: 625-635
        • Huish S.
        • Green L.
        • Kempster C.
        • Smethurst P.
        • Wiltshire M.
        • Prajapati C.
        • et al.
        A comparison of platelet function in cold‐stored whole blood and platelet concentrates.
        Transfusion. 2021; 61: 3224-3235
        • Slichter S.J.
        • Fitzpatrick L.
        • Osborne B.
        • Christoffel T.
        • Gettinger I.
        • Pellham E.
        • et al.
        Platelets stored in whole blood at 4°C: in vivo posttransfusion platelet recoveries and survivals and in vitro hemostatic function.
        Transfusion. 2019; 59: 2084-2092
        • Getz T.M.
        Physiology of cold-stored platelets.
        Transfus Apher Sci. 2019; 58: 12-15
        • Murphy S.
        • Gardner F.H.
        Platelet preservation.
        N Engl J Med. 1969; 280: 1094-1098
        • Handin R.I.
        • Valeri C.R.
        Hemostatic effectiveness of platelets stored at 22°C.
        N Engl J Med. 1971; 285: 538-543
        • Becker G.A.
        • Tuccelli M.
        • Kunicki T.
        • Chalos M.K.
        • Aster R.H.
        Studies of platelet concentrates stored at 22C and 4C.
        Transfusion. 1973; 13: 61-68
        • Stubbs J.R.
        • Tran S.A.
        • Emery R.L.
        • Hammel S.A.
        • Haugen D.A.L.
        • Zielinski M.D.
        • et al.
        Cold platelets for trauma-associated bleeding: regulatory approval, accreditation approval, and practice implementation-just the “tip of the iceberg.
        Transfusion. 2017; 57: 2836-2844
        • van der Meer P.F.
        • Klei T.R.
        • de Korte D.
        Quality of platelets in stored whole blood.
        Transfus Med Rev. 2020; 34: 234-241
        • Strandenes G.
        • Sivertsen J.
        • Bjerkvig C.K.
        • Fosse T.K.
        • Cap A.P.
        • del Junco D.J.
        • et al.
        A pilot trial of platelets stored cold versus at room temperature for complex cardiothoracic surgery.
        Anesthesiology. 2020; 133: 1173-1183
        • Li V.J.
        • Bailey S.L.
        • Miles J.
        • Usaneerungrueng C.
        • Fang L.Y.
        • Corson J.
        • et al.
        Effect of bedside filtration on aggregates from cold‐stored whole blood–derived platelet‐rich plasma and apheresis platelet concentrates.
        Transfusion. 2022; 62: 22-27
        • Warner M.A.
        • Kurian E.B.
        • Hammel S.A.
        • Buskirk C.M.
        • Kor D.J.
        • Stubbs J.R.
        Transition from room temperature to cold‐stored platelets for the preservation of blood inventories during the COVID‐19 pandemic.
        Transfusion. 2021; 61: 72-77
        • Wood B.
        • Johnson L.
        • Hyland R.A.
        • Marks D.C.
        Maximising platelet availability by delaying cold storage.
        Vox Sang. 2018; 113: 403-411
        • Cohn C.S.
        • Stubbs J.
        • Schwartz J.
        • Francis R.
        • Goss C.
        • Cushing M.
        • et al.
        A comparison of adverse reaction rates for PAS C versus plasma platelet units.
        Transfusion. 2014; 54: 1927-1934
        • Tobian A.A.R.
        • Fuller A.K.
        • Uglik K.
        • Tisch D.J.
        • Borge P.D.
        • Benjamin R.J.
        • et al.
        The impact of platelet additive solution apheresis platelets on allergic transfusion reactions and corrected count increment (CME).
        Transfusion. 2014; 54: 1523-1529
        • Becker J.
        • Mendez B.
        • Striejewski J.
        Platelet additive solution is able to provide a product with predictably decreased titers of anti-A and B.
        Transfusion. 2011; 51: 38A
        • Surowiecka M.
        • Dangerfield R.
        • Welbig J.
        • Pulkrabek S.
        • Cohn C.
        Isohemagglutinin titers in platelet additive solution 3 (PAS 3) platelets versus conventional plasma platelet units.
        Transfusion. 2013; 53: 81A
        • Galloway-Haskins R.
        • Heaton W.
        • Nikolis N.
        • Stein A.
        • Mulani M.
        • Macwan S.
        • et al.
        3 launch reaction rates (RR) and increments at north shore university hospital (NSUH).
        Transfusion. 2013; 53: 190A-191A
        • Becker J.
        First experiences transfusing platelets produced with additive solution.
        Transfusion. 2011; 51: 190A-191A
        • Becker J.
        First experiences transfusing platelets produced with isoplate.
        Transfusion. 2014; 54: 193A-194A
        • Getz T.M.
        • Montgomery R.K.
        • Bynum J.A.
        • Aden J.K.
        • Pidcoke H.F.
        • Cap A.P.
        Storage of platelets at 4°C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses.
        Transfusion. 2016; 56: 1320-1328
        • Reddoch‐Cardenas K.M.
        • Peltier G.C.
        • Chance T.C.
        • Nair P.M.
        • Meledeo M.A.
        • Ramasubramanian A.K.
        • et al.
        Cold storage of platelets in platelet additive solution maintains mitochondrial integrity by limiting initiation of apoptosis‐mediated pathways.
        Transfusion. 2021; 61: 178-190
        • Reddoch‐Cardenas K.M.
        • Sharma U.
        • Salgado C.L.
        • Montgomery R.K.
        • Cantu C.
        • Cingoz N.
        • et al.
        An in vitro pilot study of apheresis platelets collected on Trima Accel system and stored in T‐PAS+ solution at refrigeration temperature (1–6°C).
        Transfusion. 2019; 59: 1789-1798
        • Johnson L.
        • Tan S.
        • Wood B.
        • Davis A.
        • Marks D.C.
        Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions.
        Transfusion. 2016; 56: 1807-1818
        • Wang X.
        • Fan Y.
        • Shi R.
        • Li J.
        • Zhao S.
        Quality assessment of platelets stored in a modified platelet additive solution with trehalose at low temperature (10 °C) and in vivo effects on rabbit model of thrombocytopenia.
        Platelets. 2015; 26: 72-79
        • Hegde S.N.
        • Akbar H.
        • Nestheide S.
        • Wellendorf A.M.
        • Bohan B.
        • Johnson J.F.
        • et al.
        RhoA targeting suppresses cold-induced platelet lesion and allows refrigerated storage of functional human platelets to fourteen days.
        Blood. 2019; 134 (99–99)
        • Pandey S.
        • Belanger G.A.
        • Rajbhandary S.
        • Cohn C.S.
        • Benjamin R.J.
        • Bracey A.W.
        • et al.
        A survey of US hospitals on platelet inventory management, transfusion practice, and platelet availability.
        Transfusion. 2021; 61: 2611-2620
        • Wang X.
        • Fan Y.
        • Shi R.
        • Li J.
        • Zhao S.
        Quality assessment of platelets stored in a modified platelet additive solution with trehalose at low temperature (10 °C) and in vivo effects on rabbit model of thrombocytopenia.
        Platelets. 2015; 26: 72-79
        • Baghdadi V.
        • Ranjbaran R.
        • Yari F.
        • Rafiee M.H.
        Trehalose an additive solution for platelet concentrate to protect platelets from apoptosis and clearance during their storage at 4°C.
        Cell J. 2022; 24: 69-75
        • Kelly K.
        • Sen S.
        • Ilyin I.
        • Dumont L.J.
        Hyperbaric treatment of platelets extends in vitro storage to 14 days.
        Transfusion. 2022; 62: 1736-1742
      2. Gomez N.S. Cold Stored Platelets South Texas Blood and Tissue Experience. In: South Central Association of Blood Banks Meeting. Orlando, Florida: 2021.

        • Collins R.A.
        • Wisniewski M.K.
        • Waters J.H.
        • Triulzi D.J.
        • Yazer M.H.
        Effectiveness of multiple initiatives to reduce blood component wastage.
        Am J Clin Pathol. 2015; 143: 329-335
        • Sekhar M.
        • Clark S.
        • Atugonza R.
        • Li A.
        • Chaudhry Z.
        Effective implementation of a patient blood management programme for platelets.
        Transfus Med. 2016; 26: 422-431
        • Harm S.K.
        • Szczepiorkowski Z.M.
        • Dunbar N.M.
        Routine use of Day 6 and Day 7 platelets with rapid testing: two hospitals assess impact 1 year after implementation.
        Transfusion. 2018; 58: 938-942
        • Yarahuan J.W.
        • Billet A.
        • Hron J.D.
        A quality improvement initiative to decrease platelet ordering errors and a proposed model for evaluating clinical decision support effectiveness.
        Appl Clin Inf. 2019; 10: 505-512
      3. Spinella P., Utah U., Minnesota U., Medicine Wus, Defense Usd, Pittsburgh U. CHIlled Platelet Study “CHIPS” [Internet]. Clinical Trials.Gov2021 [cited 2022 Sep 26];Available from: https://ClinicalTrials.gov/show/NCT04834414.

        • Scorer T.
        • Williams A.
        • Reddoch‐Cardenas K.
        • Mumford A.
        Manufacturing variables and hemostatic function of cold‐stored platelets: a systematic review of the literature.
        Transfusion. 2019; 59: 2722-2732
      4. The Cold Stored Platelet Early Intervention in Hemorrhagic Shock (CriSP-HS) trial [Internet]. Clinical Trials.Gov2022 [cited 2022 Sep 28];Available from: https://clinicaltrials.gov/ct2/show/NCT04667468.

      5. Sperry J. Cold-stored Platelet Early Intervention in TBI (CriSP-TBI) [Internet]. 2022 [cited 2022 Dec 22];Available from: https://clinicaltrials.gov/ct2/show/NCT04726410.

        • Hegde S.
        • Wellendorf A.M.
        • Zheng Y.
        • Cancelas J.A.
        Antioxidant prevents clearance of hemostatically competent platelets after long‐term cold storage.
        Transfusion. 2021; 61: 557-567
        • Jones J.M.
        • Sapiano M.R.P.
        • Mowla S.
        • Bota D.
        • Berger J.J.
        • Basavaraju S. v
        Has the trend of declining blood transfusions in the United States ended? Findings of the 2019 national blood collection and utilization survey.
        Transfusion. 2021; 61