Advertisement
Review Article|Articles in Press, 103685

Hematological toxicities of immune checkpoint inhibitors and the impact of blood transfusion and its microbiome on therapeutic efficacy and recipient’s safety and survival outcome:A systematic narrative appraisal of where we are now!

  • Mohamed Shouman
    Affiliations
    Department of Medical Oncology, National Cancer Institute, Cairo, Egypt

    Saskatoon Cancer Centre, Saskatchewan, Canada
    Search for articles by this author
  • Hadi Goubran
    Affiliations
    Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Canada
    Search for articles by this author
  • Jerard Seghatchian
    Affiliations
    International Consultancy in Blood Components Manufacturing/Quality/Safety, Apheresis Technologies, Quality Audit/Inspection and Innovative DDR Strategy, London, England, UK
    Search for articles by this author
  • Thierry Burnouf
    Correspondence
    Correspondence to: Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-shin street, Xn-Yi district, Taipei, Taiwan.
    Affiliations
    Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan

    International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
    Search for articles by this author
Published:February 25, 2023DOI:https://doi.org/10.1016/j.transci.2023.103685

      Abstract

      Classically, patients with solid and hematologic malignancies have been treated with a combination of chemotherapy with or without a holistic targeted strategy using approved conventional therapy. While the evidence-based use of Immunomodulatory drugs and Immune checkpoint inhibitors (ICIs), including those targeting the PD-1, PD-L1 and CTLA-4, have reshaped the treatment paradigm for many malignant tumors and significantly stretched the life expectancy of patients, as for any interventional therapy, the rise in ICI applications, was associated with the observation of more immune-related hematological adverse events. Many of these patients require transfusion support during their treatment in line with precision transfusion. It has been presumed that transfusion-related immunomodulation (TRIM) and the microbiome can pose immunosuppressive effects on the recipients. Looking to the past and beyond and translating available data into practice in the evolving role of pharmaceutical therapy to ICI-receiving patients, we performed a narrative review of the literature on the immune-related hematological adverse events of ICIs, immunosuppressive mechanisms linked to blood product transfusions, as well as the detrimental impact of transfusions and its related microbiome on the sustained efficacy of ICIs and the patients’ survival outcomes. Recent reports are pointing to the negative impact of transfusion on ICI response. Studies have concluded that packed RBC [PRBC] transfusions lead to an inferior progression-free and overall survival in patients with advanced cancer receiving ICIs, even after adjustments for other prognostic variables. The attenuation of the effectiveness of immunotherapy likely results from the immunosuppressive effects of PRBC transfusions. It is, therefore, wise to look retrospectively and prospectively at the impact of transfusion on ICI effects and adopt, in the interim, a restrictive transfusion strategy, if applicable, for those patients.

      Abbreviations:

      ADAMTS13 (A Disintegrin and Metalloprotease with ThromboSpondin-1 motif, member 13), AE (Adverse events), AIHA (Autoimmune hemolytic anemia), CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4), CRC (Colorectal cancer), FDA (Food and Drug Administration), GI (Gastrointestinal), HLH (Hemophagocytic lymphohistiocytosis), ICI (Immune checkpoint inhibitors), ICSR (Individual case safety report), ir (Immune-related), irAE (Immune-related adverse events), ITP (Immune thrombocytopenic Purpura), NSCLC (Non-small-cell lung cancer), PD-1 (programmed cell death receptor-1), PD-L1 (programmed cell death ligand-1), PRBC (Packed red blood cells), PRCA (Pure red cell aplasia), RC (Renal cell carcinoma), RBCs (Red blood cells), TMA (Thrombotic microangiopathy), TPE (Therapeutic plasma exchange), TRIM (Transfusion-related immune modulation), TTP (Thrombotic thrombocytopenic purpura), UC (Urothelial carcinoma), vWF (von Willebrand factor)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Transfusion and Apheresis Science
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gaspar B.L.
        • Sharma P.
        • Das R.
        Anemia in malignancies: pathogenetic and diagnostic considerations.
        Hematology. 2015; 20 (Epub 2014 Mar 26.): 18-25https://doi.org/10.1179/1607845414Y.0000000161
        • Knight K.
        • Wade S.
        • Balducci L.
        Prevalence and outcomes of anemia in cancer: a systematic review of the literature.
        Am J Med. 2004; 116: 11S-26Shttps://doi.org/10.1016/j.amjmed.2003.12.008
        • Madeddu C.
        • Gramignano G.
        • Astara G.
        • Demontis R.
        • Sanna E.
        • Atzeni V.
        • et al.
        Pathogenesis and treatment options of cancer related anemia: perspective for a targeted mechanism-based approach.
        Front Physiol. 2018; 9 (Sep 20): 1294
        • Abdel-Razeq H.
        • Hashem H.
        Recent update in the pathogenesis and treatment of chemotherapy and cancer induced anemia.
        Crit Rev Oncol Hematol. 2020; 145 (Epub 2019 Nov 26.)102837https://doi.org/10.1016/j.critrevonc.2019.102837
        • Naidoo J.
        • Page D.B.
        • Li B.T.
        • Connell L.C.
        • Schindler K.
        • Lacouture M.E.
        • et al.
        Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies.
        Ann Oncol. 2016; 27 (Jul): 1362https://doi.org/10.1093/annonc/mdw141
        • Davies M.
        Acute and long-term adverse events associated with checkpoint blockade.
        Semin Oncol Nurs. 2019; 35 (Oct)150926https://doi.org/10.1016/j.soncn.2019.08.005
        • Delanoy N.
        • Michot J.M.
        • Comont T.
        • Kramkimel N.
        • Lazarovici J.
        • Dupont R.
        • et al.
        Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: a descriptive observational study.
        Lancet Haematol. 2019; 6 (Jan): e48-e57https://doi.org/10.1016/S2352-3026(18)30175-3
        • Demetri G.D.
        Anaemia and its functional consequences in cancer patients: current challenges in management and prospects for improving therapy.
        Br J Cancer. 2001; 84 Suppl 1 (Apr): 31-37https://doi.org/10.1054/bjoc.2001.1750
        • Ludwig H.
        • Strasser K.
        Symptomatology of anemia.
        Semin Oncol. 2001; 28: 7-14https://doi.org/10.1016/s0093-7754(01)90206-4
        • Huang Y.
        • Su C.
        • Jiang H.
        • Liu F.
        • Yu Q.
        • Zhou S.
        The association between pretreatment anemia and overall survival in advanced non-small cell lung cancer: a retrospective cohort study using propensity score matching.
        J Cancer. 2022; 13 (doi: 10.7150/jca.55159. eCollection 2022. PMID: 34976170): 51-61
        • Goubran H.A.
        • Elemary M.
        • Radosevich M.
        • Seghatchian J.
        • El-Ekiaby M.
        • Burnouf T.
        Impact of transfusion on cancer growth and outcome.
        Cancer Growth Metastas. 2016; 9 (doi: 10.4137/CGM.S32797. eCollection 2016. PMID: 27006592): 1-8
        • Iqbal N.
        • Haider K.
        • Sundaram V.
        • Radosevic J.
        • Burnouf T.
        • Seghatchian J.
        • et al.
        Red blood cell transfusion and outcome in cancer.
        Transfus Apher Sci. 2017; 56 (Epub 2017 May 26. PMID: 28602484): 287-290https://doi.org/10.1016/j.transci.2017.05.014
        • Opelz G.
        • Sengar D.P.
        • Mickey M.R.
        • Terasaki P.I.
        Effect of blood transfusions on subsequent kidney transplants.
        Transpl Proc. 1973; 5: 253-259
        • Petrelli F.
        • Consoli F.
        • Ghidini A.
        • Perego G.
        • Luciani A.
        • Mercurio P.
        • et al.
        Efficacy of immune checkpoint inhibitors in rare tumours: a systematic review.
        Front Immunol. 2021; 12 (eCollection 2021. PMID: 34616395)720748https://doi.org/10.3389/fimmu.2021.720748
        • Goubran H.
        • Sheridan D.
        • Radosevic J.
        • Burnouf T.
        • Seghatchian J.
        Transfusion-related immunomodulation and cancer.
        Transfus Apher Sci. 2017; 56 (Epub 2017 May 27. PMID: 28606449): 336-340https://doi.org/10.1016/j.transci.2017.05.019
        • Goubran H.
        • Seghatchian J.
        • Radosevic J.
        • Ragab G.
        • Burnouf T.
        The microbiome and transfusion in cancer patients.
        Transfus Apher Sci. 2017; 56 (Epub 2017 Jun 3. PMID: 28633955): 330-335https://doi.org/10.1016/j.transci.2017.05.023
      1. Goubran H., The microbiome and transfusion in cancer patients, International Society of blood transfusion, Plenary State of the Art, Educational Session, Barcelona, Spain, 2020. ISBT science series abstract PL-02–02: 4.

        • Marin-Acevedo J.A.
        • Chirila R.M.
        • Dronca R.S.
        Immune checkpoint inhibitor toxicities.
        Mayo Clin Proc. 2019; 94: 1321-1329https://doi.org/10.1016/j.mayocp.2019.03.012
        • Michot J.M.
        • Lazarovici J.
        • Tieu A.
        • Champiat S.
        • Voisin A.L.
        • Ebbo M.
        • et al.
        Haematological immune-related adverse events with immune checkpoint inhibitors, how to manage?.
        Eur J Cancer. 2019; 122 (Epub 2019 Oct 18. PMID: 31634647): 72-90https://doi.org/10.1016/j.ejca.2019.07.014
        • Davis E.J.
        • Salem J.E.
        • Young A.
        • Green J.R.
        • Ferrell P.B.
        • Ancell K.K.
        • et al.
        Hematologic complications of immune checkpoint inhibitors.
        Oncologist. 2019; 24 (Epub 2019 Feb 28. PMID: 30819785): 584-588https://doi.org/10.1634/theoncologist.2018-0574
        • Bergvall T.
        • Norén G.N.
        • Lindquist M.
        vigiGrade: a tool to identify well-documented individual case reports and highlight systematic data quality issues.
        Drug Saf. 2014; 37: 65-77https://doi.org/10.1007/s40264-013-0131-x
        • Hill A.
        • Hill Q.A.
        Autoimmune hemolytic anemia.
        Hematol Am Soc Hematol Educ Program. 2018; 2018: 382-389https://doi.org/10.1182/asheducation-2018.1.382
        • Hwang S.R.
        • Saliba A.N.
        • Wolanskyj-Spinner A.P.
        Immunotherapy-associated autoimmune hemolytic anemia.
        Hematol Oncol Clin North Am. 2022; 36: 365-380https://doi.org/10.1016/j.hoc.2021.11.002
        • Hasanov M.
        • Konoplev S.N.
        • Hernandez C.M.R.
        Nivolumab-induced cold agglutinin syndrome successfully treated with rituximab.
        Blood Adv. 2018; 2: 1865-1868https://doi.org/10.1182/bloodadvances.2018019000
        • Saliba A.N.
        • Xie Z.
        • Higgins A.S.
        • Andrade-Gonzalez X.A.
        • Fuentes-Bayne H.E.
        • Hampel P.J.
        • et al.
        Immune-related hematologic adverse events in the context of immune checkpoint inhibitor therapy.
        Am J Hematol. 2021; 96 (doi: 10.1002/ajh.26273. Epub 2021 Jul 2. PMID: 34137072): E362-E367
        • Palla A.R.
        • Kennedy D.
        • Mosharraf H.
        • Doll D.
        Autoimmune hemolytic anemia as a complication of nivolumab therapy.
        Case Rep Oncol. 2016; 9 (doi: 10.1159/000452296. eCollection 2016 Sep-Dec. PMID: 27920704): 691-697
        • Schwab K.S.
        • Heine A.
        • Weimann T.
        • Kristiansen G.
        • Brossart P.
        Development of hemolytic anemia in a nivolumab-treated patient with refractory metastatic squamous cell skin cancer and chronic lymphatic leukemia.
        Case Rep Oncol. 2016; 9 (doi: 10.1159/000447508. eCollection 2016 May-Aug. PMID: 27462240): 373-378
        • Tardy M.P.
        • Gastaud L.
        • Boscagli A.
        • Peyrade F.
        • Gallamini A.
        • Thyss A.
        Autoimmune hemolytic anemia after nivolumab treatment in Hodgkin lymphoma responsive to immunosuppressive treatment. A case report.
        Hematol Oncol. 2017; 35 (doi: 10.1002/hon.2338. Epub 2016 Aug 19. PMID: 27539158): 875-877
        • Kong B.Y.
        • Micklethwaite K.P.
        • Swaminathan S.
        • Kefford R.F.
        • Carlino M.S.
        Autoimmune hemolytic anemia induced by anti-PD-1 therapy in metastatic melanoma.
        Melanoma Res. 2016; 26 (doi: 10.1097/CMR.0000000000000232. PMID: 26795275): 202-204
        • Simeone E.
        • Grimaldi A.M.
        • Esposito A.
        • Curvietto M.
        • Palla M.
        • Paone M.
        • et al.
        Serious haematological toxicity during and after ipilimumab treatment: a case series.
        J Med Case Rep. 2014; 8: 240https://doi.org/10.1186/1752-1947-8-240
        • Khan U.
        • Ali F.
        • Khurram M.S.
        • Zaka A.
        • Hadid T.
        Immunotherapy-associated autoimmune hemolytic anemia.
        J Immunother Cancer. 2017; 5 (eCollection 2017. PMID: 28239468): 15https://doi.org/10.1186/s40425-017-0214-9
        • Tanios G.E.
        • Doley P.B.
        • Munker R.
        Autoimmune hemolytic anemia associated with the use of immune checkpoint inhibitors for cancer: 68 cases from the Food and Drug Administration database and review.
        Eur J Haematol. 2019; 102 (doi: 10.1111/ejh.13187. Epub 2018 Nov 29. PMID: 30347480): 157-162
        • Leaf R.K.
        • Ferreri C.
        • Rangachari D.
        • Mier J.
        • Witteles W.
        • Ansstas G.
        • et al.
        Clinical and laboratory features of autoimmune hemolytic anemia associated with immune checkpoint inhibitors.
        Am J Hematol. 2019; 94 (doi: 10.1002/ajh.25448. Epub 2019 Mar 13. PMID: 30790338): 563-574
        • Brahmer J.R.
        • Lacchetti C.
        • Schneider B.J.
        • Atkins M.B.
        • Brassil K.J.
        • Caterino J.M.
        • et al.
        National comprehensive cancer network. management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: american society of clinical oncology clinical practice guideline.
        J Clin Oncol. 2018; 36 (Epub 2018 Feb 14. PMID: 29442540): 1714-1768https://doi.org/10.1200/JCO.2017.77.6385
        • Ghanem P.
        • Marrone K.
        • Shanbhag S.
        • Brahmer J.R.
        • Naik R.P.
        Current challenges of hematologic complications due to immune checkpoint blockade: a comprehensive review.
        Ann Hematol. 2022; 101 (Epub 2021 Dec 28. PMID: 34962580 DOI: 10.1007/s00277-021-04690-x): 1-10https://doi.org/10.1007/s00277-021-04690-x
        • Means Jr., R.T.
        Pure red cell aplasia.
        Blood. 2016; 128: 2504-2509https://doi.org/10.1182/blood-2016-05-717140
        • Gordon I.O.
        • Wade T.
        • Chin K.
        • Dickstein J.
        • Gajewski T.F.
        Immune-mediated red cell aplasia after anti-CTLA-4 immunotherapy for metastatic melanoma.
        Cancer Immunol Immunother. 2009; 58 (Epub 2008 Dec 4): 1351-1353https://doi.org/10.1007/s00262-008-0627-x
        • Nair R.
        • Gheith S.
        • Nair S.G.
        Immunotherapy-associated hemolytic anemia with pure red-cell aplasia.
        N Engl J Med. 2016; 374: 1096-1097https://doi.org/10.1056/NEJMc1509362
        • Yuki A.
        • Takenouchi T.
        • Takatsuka S.
        • Ishiguro T.
        A case of pure red cell aplasia during nivolumab therapy for cardiac metastatic melanoma.
        Melanoma Res. 2017; 27: 635-637https://doi.org/10.1097/CMR.0000000000000392
        • Le Aye L.
        • Harris J.B.
        • Siddiqi I.
        • Hagiya A.
        Bone marrow findings of immune-mediated pure red cell aplasia following anti-programmed cell death receptor-1 therapy: a report of two cases and review of literature.
        J Hematol. 2019; 8 (doi: 10.14740/jh507. Epub 2019 Jun 30. PMID: 32300448): 71-78
        • Isoda A.
        • Miyazawa Y.
        • Tahara K.
        • Mihara M.
        • Saito A.
        • Matsumoto M.
        • et al.
        Pembrolizumab-induced pure red cell aplasia successfully treated with intravenous immunoglobulin.
        Intern Med. 2020; 59 (Epub 2020 May 8): 2041-2045https://doi.org/10.2169/internalmedicine.4467-20
        • Joly B.S.
        • Coppo P.
        • Veyradier A.
        Thrombotic thrombocytopenic purpura.
        Blood. 2017; 129 (Epub 2017 Apr 17): 2836-2846https://doi.org/10.1182/blood-2016-10-709857
        • Youssef A.
        • Kasso N.
        • Torloni A.S.
        • Stanek M.
        • Dragovich T.
        • Gimbel M.
        • et al.
        Thrombotic thrombocytopenic purpura due to checkpoint inhibitors.
        Case Rep Hematol. 2018; 2018 (doi: 10.1155/2018/2464619. eCollection 2018. PMID: 30671268)2464619
        • Ali Z.
        • Zafar M.U.
        • Wolfe Z.
        • Akbar F.
        • Lash B.
        Thrombotic thrombocytopenic purpura induced by immune checkpoint inhibitiors: a case report and review of the literature.
        Cureus. 2020; 12e11246https://doi.org/10.7759/cureus.11246
        • Dickey M.S.
        • Raina A.J.
        • Gilbar P.J.
        • Wisniowski B.L.
        • Collins J.T.
        • Karki B.
        • et al.
        Pembrolizumab-induced thrombotic thrombocytopenic purpura.
        J Oncol Pharm Pr. 2020; 26 (Epub 2019 Nov 13): 1237-1240https://doi.org/10.1177/1078155219887212
        • Gilbar P.J.
        • Dickey M.S.
        Case reports of acquired thrombotic thrombocytopenic purpura attributed to pembrolizumab.
        J Oncol Pharm Pr. 2022; (10781552221088025)https://doi.org/10.1177/10781552221088025
        • Nelson B.E.
        • Ejezie C.L.
        • Stephen B.A.
        • Nardo M.
        • Campbell E.
        • Gong J.
        • et al.
        Spectrum of immune checkpoint inhibitor anemias: results from a single center.
        Early-Phase Clin Trials Case Ser Exp J Hematol. 2022; 11 (Epub 2022 Jun 2): 113-120https://doi.org/10.14740/jh1006
        • King J.
        • de la Cruz J.
        • Lutzky J.
        Ipilimumab-induced thrombotic thrombocytopenic purpura (TTP).
        J Immunother Cancer. 2017; 5 (eCollection 2017): 19https://doi.org/10.1186/s40425-017-0224-7
        • Thomas M.R.
        • Scully M.
        How I treat microangiopathic hemolytic anemia in patients with cancer.
        Blood. 2021; 137: 1310-1317https://doi.org/10.1182/blood.2019003810
        • Lafranchi A.
        • Springe D.
        • Rupp A.
        • Ebnöther L.
        • Zschiedrich S.
        Thrombotic thrombocytopenic purpura associated to dual checkpoint inhibitor therapy for metastatic melanoma.
        CEN Case Rep. 2020; 9 (Epub 2020 Jan 30): 289-290https://doi.org/10.1007/s13730-020-00454-0
        • Lancelot M.
        • Miller M.J.
        • Roback J.
        • Stowell S.R.
        Refractory thrombotic thrombocytopenic purpura related to checkpoint inhibitor immunotherapy.
        Transfusion. 2021; 61 (Epub 2020 Oct 29): 322-328https://doi.org/10.1111/trf.16117
        • Rodeghiero F.
        • Stasi R.
        • Gernsheimer T.
        • Michel M.
        • Provan D.
        • Arnold D.M.
        • et al.
        Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group.
        Blood. 2009; 113 (Epub 2008 Nov 12): 2386-2393https://doi.org/10.1182/blood-2008-07-162503
        • Shiuan E.
        • Beckermann K.E.
        • Ozgun A.
        • Kelly C.
        • McKean M.
        • McQuade J.
        • et al.
        Thrombocytopenia in patients with melanoma receiving immune checkpoint inhibitor therapy.
        J Immunother Cancer. 2017; 5 (eCollection 2017): 8https://doi.org/10.1186/s40425-017-0210-0
        • Kanameishi S.
        • Otsuka A.
        • Nonomura Y.
        • Fujisawa A.
        • Endo Y.
        • Kabashima K.
        Idiopathic thrombocytopenic purpura induced by nivolumab in a metastatic melanoma patient with elevated PD-1 expression on B cells.
        Ann Oncol. 2016; 27 (Epub 2015 Nov 24): 546-547https://doi.org/10.1093/annonc/mdv580
        • Karakas Y.
        • Yuce D.
        • Kılıckap S.
        Immune thrombocytopenia induced by nivolumab in a metastatic non-small cell lung cancer patient.
        Oncol Res Treat. 2017; 40 (Epub 2017 Sep 19): 621-622https://doi.org/10.1159/000477968
        • Haddad T.C.
        • Zhao S.
        • Li M.
        • Patel S.H.
        • Johns A.
        • Grogan M.
        • et al.
        Cancer Immunol Immunother. 2022; 71 (Epub 2021 Oct 7. Immune checkpoint inhibitor-related thrombocytopenia: incidence, risk factors and effect on survival. PMID: 34618180): 1157-1165https://doi.org/10.1007/s00262-021-03068-2
        • Sui J.D.
        • Wang Y.
        • Wan Y.
        • Wu Y.Z.
        Risk of hematologic toxicities with programmed cell death-1 inhibitors in cancer patients: a meta-analysis of current studies.
        Drug Des Devel Ther. 2018; 12 (eCollection 2018): 1645-1657https://doi.org/10.2147/DDDT.S167077
        • Quirk S.K.
        • Shure A.K.
        • Agrawal D.K.
        Immune-mediated adverse events of anticytotoxic T lymphocyte-associated antigen 4 antibody therapy in metastatic melanoma.
        Transl Res. 2015; 166 (Epub 2015 Jun 11): 412-424https://doi.org/10.1016/j.trsl.2015.06.005
        • Jotatsu T.
        • Oda K.
        • Yamaguchi Y.
        • Noguchi S.
        • Kawanami T.
        • Kido T.
        • et al.
        Immune-mediated thrombocytopenia and hypothyroidism in a lung cancer patient treated with nivolumab.
        Immunotherapy. 2018; 10: 85-91https://doi.org/10.2217/imt-2017-0100
        • Mori H.
        • Sakai C.
        • Iwai M.
        • Sasaki Y.
        • Gomyo T.
        • Toyoshi S.
        • et al.
        Immune thrombocytopenia induced by nivolumab in a patient with non-small cell lung cancer.
        Respir Med Case Rep. 2019; 28 (eCollection 2019)100871https://doi.org/10.1016/j.rmcr.2019.100871
        • Trinh S.
        • Le A.
        • Gowani S.
        • La-Beck N.M.
        Management of immune-related adverse events associated with immune checkpoint inhibitor therapy: a minireview of current clinical guidelines.
        Asia Pac J Oncol Nurs. 2019; 6: 154-160https://doi.org/10.4103/apjon.apjon_3_19
        • Rogers B.B.
        • Zawislak C.
        • Wong V.
        Management of hematologic adverse events associated with immune checkpoint inhibitors.
        J Adv Pr Oncol. 2021; 12 (Epub 2021 May 1): 392-404https://doi.org/10.6004/jadpro.2021.12.4.4
        • Zaremba A.
        • Kramer R.
        • De Temple V.
        • Bertram S.
        • Salzmann M.
        • Gesierich A.
        • et al.
        Grade 4 neutropenia secondary to immune checkpoint inhibition - a descriptive observational retrospective multicenter analysis.
        Front Oncol. 2021; 11 (eCollection 2021)765608https://doi.org/10.3389/fonc.2021.765608
        • Kramer R.
        • Zaremba A.
        • Moreira A.
        • Ugurel S.
        • Johnson D.B.
        • Hassel J.C.
        • et al.
        Hematological immune related adverse events after treatment with immune checkpoint inhibitors.
        Eur J Cancer. 2021; 147 (Epub 2021 Mar 9): 170-181https://doi.org/10.1016/j.ejca.2021.01.013
        • Petrelli F.
        • Morelli A.M.
        • Luciani A.
        • Ghidini A.
        • Solinas C.
        Risk of infection with immune checkpoint inhibitors: a systematic review and meta-analysis.
        Target Oncol. 2021; 16 (Epub 2021 Jul 5. PMID: 34224061): 553-568https://doi.org/10.1007/s11523-021-00824-3
        • Boegeholz J.
        • Brueggen C.S.
        • Pauli C.
        • Dimitriou F.
        • Haralambieva E.
        • Dummer R.
        • et al.
        Challenges in diagnosis and management of neutropenia upon exposure to immune-checkpoint inhibitors: meta-analysis of a rare immune-related adverse side effect.
        BMC Cancer. 2020; 20: 300https://doi.org/10.1186/s12885-020-06763-y
        • Mackey D.
        • McFall A.J.
        MAMPs and MIMPs: proposed classifications for inducers of innate immunity.
        Mol Microbiol. 2006; 61 (Epub 2006 Aug 8.PMID: 16899081): 1365-1371https://doi.org/10.1111/j.1365-2958.2006.05311.x
        • Geraldo A.
        • Sbors L.
        • Martinello F.
        The effect of probiotic use on ABO antibody titers.
        Immunohematology. 2022; 38: 55-61https://doi.org/10.21307/immunohematology-2022-042
        • Païssé S.
        • Valle C.
        • Servant F.
        • Courtney M.
        • Burcelin R.
        • Amar J.
        • et al.
        Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing.
        Transfusion. 2016; 56 (doi: 10.1111/trf.13477. Epub 2016 Feb 10. PMID: 26865079): 1138-1147
        • Yang J.
        • He P.
        • Zhou M.
        • Li S.
        • Zhang J.
        • Tao X.
        • et al.
        Variations in oral microbiome and its predictive functions between tumorous and healthy individuals.
        J Med Microbiol. 2022; 71https://doi.org/10.1099/jmm.0.001568
        • Heiss M.M.
        • Mempel W.
        • Delanoff C.
        • Jauch K.W.
        • Gabka C.
        • Mempel M.
        • et al.
        Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery.
        J Clin Oncol. 1994; 12: 1859-1867https://doi.org/10.1200/JCO.1994.12.9.1859
        • Amato A.
        • Pescatori M.
        Perioperative blood transfusions for the recurrence of colorectal cancer.
        Cochrane Database Syst Rev. 2006; 2006CD005033https://doi.org/10.1002/14651858.CD005033.pub2
        • Petrelli F.
        • Ghidini M.
        • Ghidini A.
        • Sgroi G.
        • Vavassori I.
        • Petrò D.
        • et al.
        Red blood cell transfusions and the survival in patients with cancer undergoing curative surgery: a systematic review and meta-analysis.
        Surg Today. 2021; 51 (Epub 2021 Jan 3): 1535-1557https://doi.org/10.1007/s00595-020-02192-3
        • Han J.
        • Jeon Y.T.
        • Ryu J.H.
        • Oh A.Y.
        • Kim H.
        • Bae Y.K.
        • et al.
        Blood transfusion had no influence on the 5-year biochemical recurrence after robot-assisted radical prostatectomy: a retrospective study.
        BMC Urol. 2021; 21: 160https://doi.org/10.1186/s12894-021-00926-0
        • D’Avella C.
        • Devarajan K.
        • Edelman M.
        • Daniel
        • Geynisman D.
        The effect of packed red blood cell transfusions on the clinical efficacy of immunotherapy.
        J Immunother Cancer. 2020; 8: A180
        • Mispelbaum R.
        • Hattenhauer S.T.
        • Brossart P.
        • Heine A.
        Red blood cell transfusions impact response rates to immunotherapy in patients with solid malignant tumors.
        Front Immunol. 2022; 13 (eCollection 2022)976011https://doi.org/10.3389/fimmu.2022.976011
        • Miller P.L.
        • Carson T.L.
        Mechanisms and microbial influences on CTLA-4 and PD-1-based immunotherapy in the treatment of cancer: a narrative review.
        Gut Pathog. 2020; 12 (eCollection 2020): 43https://doi.org/10.1186/s13099-020-00381-6
        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • Reuben A.
        • Andrews M.C.
        • Karpinets T.V.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359 (Epub 2017 Nov 2): 97-103https://doi.org/10.1126/science.aan4236
        • Helmink B.A.
        • Khan M.A.W.
        • Hermann A.
        • Gopalakrishnan V.
        • Wargo J.A.
        The microbiome, cancer, and cancer therapy.
        Nat Med. 2019; 25 (Epub 2019 Mar 6): 377-388https://doi.org/10.1038/s41591-019-0377-7
        • Gopalakrishnan V.
        • Weiner B.
        • Ford C.B.
        • Sellman B.R.
        • Hammond S.A.
        • Freeman D.J.
        • et al.
        Intervention strategies for microbial therapeutics in cancer immunotherapy.
        Immunooncol Technol. 2020; 6 (eCollection 2020 Jun): 9-17https://doi.org/10.1016/j.iotech.2020.05.001
        • Seghatchian J.
        Spotlight on SARS CoV-2 infection inducing autoimmunity, through the formation of autoantibody to self hemostatic components or to host cells, often leading to severe thrombotic or bleeding events.
        Transfus Apher Sci Dec. 2022; : 15
      2. Amiral J., Seghatchian J.: Autoimmune complications of COVID-19 and potential consequences for long-lasting disease syndromes Transfusion Apheresis Science December 2022[ in press].